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Abstract
We review the recent advances towards finding the spectrum of the AdS5 × S5

superstring. We thoroughly explain the theoretical techniques which should
be useful for the ultimate solution of the spectral problem. In certain cases
our exposition is original and cannot be found in the existing literature. The
present part I deals with foundations of classical string theory in AdS5 × S5,
light-cone perturbative quantization and the derivation of the exact light-cone
world-sheet scattering matrix.
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Introduction

In the mid 1970s it became clear that the existing theoretical tools are hardly capable of
providing an ultimate solution to the theory of strong interactions–quantum chromodynamics
(QCD). At small distances quarks interact weakly and the physical properties of the theory
can be well described by perturbative expansion based on Feynman diagrammatics. However,
at large separation, forces between quarks become strong and this precludes the usage of
perturbation theory. Understanding the strong coupling dynamics of quantum Yang–Mills
theories remains one of the daunting challenges of theoretical particle physics.

A spectacular new insight into dynamics of non-Abelian gauge fields has recently been
offered by the AdS/CFT (Anti-de-Sitter/conformal field theory) duality conjecture also known
under the name of the ‘gauge-string correspondence’ [1]. This conjecture states that certain
four-dimensional quantum gauge theories could be alternatively described in terms of closed
strings moving in a ten-dimensional curved spacetime.

The prime example of the gauge-string correspondence involves the four-dimensional
maximally supersymmetric N = 4 Yang–Mills theory with gauge group SU(N) and type
IIB superstring theory defined in an AdS5 × S5 spacetime, which is the product of a five-
dimensional Anti-de-Sitter space (the maximally symmetric space of constant negative
curvature) and a 5-sphere. Since no candidate for a string dual of QCD is presently known, the
N = 4 theory together with its conjectured string partner offers a unique playground for testing
the correspondence between strings and quantum field theories, as well as for understanding
strongly coupled gauge theories in general. The success of the whole gauge-string duality
program relies on our ability to quantitatively verify this prime example of the correspondence
and, more importantly, to clarify the physical principles at work.

The N = 4 super Yang–Mills theory has a vanishing beta-function and, for this reason, is
an exact conformal field theory in four dimensions. The algebra of conformal transformations
coincides with so(4, 2) which, in addition to the Poincaré algebra, includes the generators
of scale transformations (dilatation) and conformal boosts. The supersymmetry generators
extend the conformal algebra to the superconformal algebra psu(2, 2|4), the latter being
the full algebra of global symmetries of the N = 4 theory. Simultaneously, psu(2, 2|4)
plays the role of the symmetry algebra of type IIB superstring in the AdS5 × S5 background.
Thus, the gauge and string theory at hand share the same kinematical symmetry. This, however,
does not a priori imply their undoubted equivalence.

To solve a conformal field theory, one has to identify the spectrum of primary operators
(forming irreducible representations of the conformal group) and to compute their three-point
correlation functions. Scaling (conformal) dimensions of primary operators and the three-
point correlators encode all the information about the theory since all higher point correlation
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Figure 1. The AdS/CFT correspondence: the spectrum of a 2D nonlinear sigma-model describing
string theory on a curved background is expected to be equivalent to the spectrum of a 4D quantum
non-Abelian gauge theory in the large N limit.

functions can in principle be found by using the Operator Product Expansion. The N = 4
theory has two parameters: the coupling constant gYM and the rank N of the gauge group,
and it admits a well-defined ’t Hooft expansion in powers of 1/N with the ’t Hooft coupling
λ = g2

YM
N kept fixed. The AdS/CFT duality conjecture relates these parameters to the string

coupling constant gs and the string tension g as follows: gs = λ/4πN and g = √
λ/2π .

Scaling dimensions � of composite gauge invariant primary operators are eigenvalues of the
dilatation operator and they depend on the couplings: � ≡ �(λ, 1/N). Scaling dimension is
the only label of a (super)-conformal representation which is allowed to continuously depend
on the parameters of the model. In spite of the finiteness of the N = 4 theory, composite
operators undergo non-trivial renormalization which explains the appearance of coupling-
dependent anomalous dimensions. Alternatively, in string theory on AdS5 × S5 energies E
of string states are functions of the couplings: E ≡ E(g, gs). In the most general setting,
the gauge-string duality conjecture implies that physical states of gauge and string theories
are organized in precisely the same set of psu(2, 2|4)-multiplets. In particular, energies of
string states measured in the global AdS coordinates must coincide with scaling dimensions
of gauge theory primary operators, both regarded as non-trivial functions of their couplings.
Exhibiting this fact would be the first important step toward proving the conjecture.

The initial research on the N = 4 gauge-string duality was concentrated on
deriving scaling dimensions/correlation functions of primary operators in the supergravity
approximation [2, 3]. This corresponds to the strongly coupled planar regime in the gauge
theory where λ is infinite and N is large. Only rather special states—those which are protected
from renormalization by a large amount of supersymmetry—could be a subject of comparison
here.

The next important step has been undertaken in [4], where a special scaling limit was
introduced. This work initiated intensive studies of unprotected operators with large R-charge
which eventually led to the discovery of integrable structures in the gauge theory [5–7]. This
discovery marked a new phase in the research on the fundamental model of AdS/CFT.

In the limit where the rank of the gauge group becomes infinite, one can neglect
string interactions and consider free string theory. Free strings propagating in a non-trivial
gravitational background such as AdS5 × S5 are described by a two-dimensional quantum
nonlinear sigma model. Finding the spectrum of the sigma model will determine the spectrum
of scaling dimensions of composite operators in the dual gauge theory, figure 1.

In general, to solve a nonlinear quantum sigma model would be a hopeless enterprise.
Remarkably, it appears, however, that classical strings in AdS5 × S5 are described by an
integrable model [8]. Integrable models constitute a special class of dynamical systems with
an infinite number of conservation laws which in many cases hold the key to their exact
solution. If string integrability continues to exist for the corresponding quantum theory then
we are facing a breathtaking possibility of solving the string model exactly and, via the
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gauge-string duality, to find an exact solution of an interacting quantum field theory in four
dimensions.

In recent years there has been a lot of exciting progress towards understanding integrable
properties of both the string sigma model and the dual gauge theory. Not all this progress is yet
logically deducible from the first principles and in certain cases it is based on new assumptions
or clever guesses. Nevertheless, we feel that a clear and self-contained picture starts to emerge
of how to obtain a solution (spectrum) of quantum strings in AdS5 × S5. It is the scope of this
review to explain this picture and to provide all the necessary technical tools in its support.

The review should be accessible to PhD students. It is certainly desirable to have a
prerequisite knowledge of string theory [9]. The review might also be useful for specialists:
as a handbook and as a source of formulae. In order not to distract the reader’s attention
with references, we comment on the literature in a special section concluding each section.
Further, we emphasize that this review is most exclusively about string theory. To get more
familiar with gauge theory constructions, the reader is invited to consult the original literature
and reviews [10, 11].

As is seen for the moment, solving the string sigma-model is a complicated multi-step
procedure. In view of this, before we start our actual journey, we would like to briefly describe
the corresponding steps and to summarize the most relevant current progress in the field. This
will also help the reader to become familiar with the content of the review.

Light-cone gauge. The starting point is the Green–Schwarz action for strings in AdS5 × S5

which defines a two-dimensional nonlinear sigma model of Wess–Zumino type [12]. The
isometries of the AdS5 × S5 spacetime constitute the global symmetry algebra of the sigma
model and string states are naturally characterized by the charges (representation labels) they
carry under this symmetry algebra. Among all representation labels two charges, J and E,
are of particular importance for the light-cone gauge fixing. The charge J is the angular
momentum carried by the string due to its rotation around the equator of S5 and E is the string
energy, the latter corresponds to the symmetry of the Green–Schwarz action under constant
shifts of the global time coordinate of the AdS space. It is the energy spectrum of string
states that we would like to determine and subsequently compare to the spectrum of scaling
dimensions of primary operators in the gauge theory.

To describe the physical states, it is advantageous to fix the so-called generalized light-
cone gauge. In this gauge the world-sheet Hamiltonian is equal to E−J , while the light-cone
momentum P+ is another global charge which, generically, is a linear combination of J and E.
Physical states should satisfy the level-matching condition: the total world-sheet momentum
carried by a state must vanish. Solving the model is then equivalent to computing the physical
spectrum of the (quantized) light-cone Hamiltonian for a fixed value of P+.

Fixing the light-cone gauge for the Green–Schwarz string in a curved background is subtle
because of a local fermionic symmetry. This question has been studied in [13, 14] where the
exact gauge-fixed classical Hamiltonian was found. This Hamiltonian is non-polynomial in
the world-sheet fields and, as such, can hardly be quantized in a straightforward manner.

From cylinder to plane: decompactification and symmetries. In the light-cone gauge the
world-sheet action depends explicitly on the light-cone momentum P+. By appropriately
rescaling the world-sheet coordinates, the theory becomes defined on a cylinder of
circumference P+. At this stage, one can consider the decompactification limit, i.e. the
limit where P+ and therefore the radius of the cylinder go to infinity, while keeping the string
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tension fixed. In this limit one is left with a theory on a plane which leads to significant
simplifications. Most importantly, the world-sheet theory has a massive spectrum and the
notion of asymptotic states (particles) is well defined, calling for an application of scattering
theory. Quantum integrability should then imply the absence of particle production and
factorization of multi-particle scattering into a sequence of two-body events.

Thus, assuming quantum integrability, the next step is to find the dispersion relation for
elementary excitations and the S-matrix describing their pairwise scattering. To deal with
particles with arbitrary world-sheet momenta, one has to give up the level-matching condition.
This leads to an important modification of the global symmetry algebra of the model. Namely,
the manifest psu(2|2) ⊕ psu(2|2) ⊂ psu(2, 2|4) symmetry algebra of the light-cone string
theory gets enhanced by two central charges [15]. The central charges vanish on physical
states satisfying the level-matching condition but they play a crucial role in fixing the structure
of the world-sheet S-matrix. The same centrally extended algebra also appears in the dual
gauge theory [16].

Dispersion relation and scattering matrix. Insights coming from both gauge and string
theory [4] led to a conjecture for the dispersion relation [17]. It has the following unusual
form:

ε(p) =
√

1 + 4g2 sin2
p

2
,

where g is the string tension, ε and p are the energy and the momentum of an elementary
excitation.

An important observation made in [16] is that the dispersion relation is uniquely
determined by the symmetry algebra of the model provided its central charges are known
as exact functions of the string tension and the world-sheet momentum. The dispersion
relation is non-relativistic although it reveals the usual square root dependence of relativistic
field theory. On the other hand, the sine function under the square root is a common feature of
lattice theories, and its appearance here is rather surprising, given that the string world-sheet
is continuous.

The various pieces of the two-body scattering matrix were conjectured in [18, 19, 21]
based on the analysis of the integral equations [22] describing classical spinning strings
[23–25] and insights from gauge theory [17]. Later, it was found that the matrix structure of
this S-matrix is uniquely fixed by the centrally extended psu(2|2)⊕psu(2|2) symmetry algebra,
the Yang–Baxter equation and the generalized physical unitarity condition [16, 26, 27].

Dressing factor. The S-matrix is thus determined up to an overall scalar function σ(p1, p2)—
the so-called dressing factor [18]. Ideally, one would hope that further physical requirements
would allow for complete determination of this factor. In relativistic integrable quantum field
theories implementation of Lorentz invariance together with crossing symmetry exchanging
particles with anti-particles imposes an additional crossing relation on the S-matrix [28].

The light-cone gauge-fixed sigma model is not Lorentz-invariant. However, as was argued
in [29], some version of the crossing relation might hold for the corresponding S-matrix; the
crossing relation then implies a non-trivial functional equation for the dressing factor. This
crossing equation is rather complicated; it is unclear how to solve it in full generality and how
to single out the physically relevant solution.

Luckily, the logarithm of the dressing factor turns out to be a 2-form on the vector space
of local conserved charges of the model which severely constraints its functional form [18].
The dressing factor explicitly depends on the string tension g and admits a ‘strong coupling’
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expansion in powers of 1/g that corresponds to an asymptotic perturbative expansion of the
string sigma model.

Combining the functional form of the dressing factor together with the first two known
orders in the strong coupling expansion [18, 30], a set of solutions to the crossing equation in
terms of an all-order strong coupling asymptotic series has been proposed [31]. A particular
solution was conjectured to correspond to the actual string sigma model perturbative expansion.
This solution was shown to agree with the explicit two-loop sigma model result [32, 33]. It
should be stressed, however, that all these solutions are only asymptotic and, therefore, they
do not define the dressing factor as a function of g.

In contrast to the strong coupling expansion, gauge theory perturbative expansion of the
dressing factor is in powers of g and it has a finite radius of convergence. As a result, the
dressing factor can be defined as a function of g. An interesting proposal for the exact dressing
factor has been put forward in [34]. On the one hand, it agrees with the explicit four-loop
gauge theory computation [35, 36]. On the other hand, it was argued to have the same strong
coupling asymptotic expansion as the particular solution by [31] corresponding to the string
sigma model. Taking all this into account, one can adopt the working assumption that the
exact dressing factor and, therefore, the S-matrix are established. However, a word of caution
to bear in mind—there is no unique solution to the crossing equation; additional yet to be
found physical constraints should be used to single out the right solution unambiguously.

Bound states. Having found the exact dispersion relation and the S-matrix, the next step is to
determine the complete asymptotic spectrum of the model. This amounts to finding all bound
states of the elementary excitations and bound states of the bound states, etc. This problem
can be solved by analyzing the pole structure of the S-matrix. The analysis reveals that all
bound states are those of elementary particles [37]. More explicitly, Q-particle bound states
comprise into the tensor product of two 4Q-dim atypical totally symmetric multiplets of the
centrally extended symmetry algebra su(2|2) [38]. Since the light-cone string sigma model is
not Lorentz-invariant, the identification of what is called the ‘physical region’ of the S-matrix
is very subtle and it affects the counting of bound states [27].

The problem of computing a bound state S-matrix is rather non-trivial and reduces to
finding its dressing factor and fixing its matrix structure. The dressing factor can be computed
by using the fusion procedure for the su(2) sector S-matrix [39, 40], and appears to be of
the same universal form as that for the elementary particles S-matrix [18]. As to the matrix
structure, it can be found by using the superfield approach by [41].

Back from plane to cylinder: finite P+ spectrum. Having understood the spectrum of the
light-cone string sigma model on a plane, one has to ‘upgrade’ the findings to a cylinder. All
physical string configurations (and dual gauge theory operators) are characterized by a finite
value of P+, and as such they are excitations of a theory on a cylinder.

The first step in determining the finite-size spectrum of a two-dimensional integrable
model is to consider the model on a cylinder of a very large but finite circumference P+.
In this case integrability implies that a multi-particle state can be approximately described
by the wavefunction of the Bethe-type [28]. Factorizability of the multi-particle scattering
matrix together with the periodicity condition for the Bethe wavefunction leads to a system
of equations on the particle momenta known as the Bethe–Yang equations. In the AdS/CFT
context these equations are usually referred to as the asymptotic Bethe ansatz4 [21]. The

4 In the theory of integrable models the asymptotic Bethe ansatz has been known for a long time [20].
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AdS5 × S5 string S-matrix has a complicated matrix structure which results in the end in a set
of nested Bethe equations [16, 21, 42].

The Bethe–Yang equations determine any power-like 1/P+ corrections to the energy of
multi-particle states. It is known, however, that for large P+ there are also exponentially
small corrections. To compute the leading exponential corrections, one can adapt Lüscher’s
formulae [43, 44] for the non-Lorentz-invariant case at hand [45]. This computation has been
done for some string states at strong coupling.

Remarkably, Lüscher’s approach could also be applied to find perturbative scaling
dimensions of gauge theory operators up to the first order where the Bethe–Yang description
breaks down [46]. The corresponding computation has been done [46] for the simplest case
of the so-called Konishi operator and stunning agreement with a very complicated four-loop
result based on the standard Feynman diagrammatics [47] has been found. String theory
starts to reveal its extreme power, elegance and simplicity in comparison to the conventional
perturbative approach!

Thermodynamic Bethe ansatz. The success in computing gauge theory perturbative
anomalous dimensions is very encouraging. However, one is really interested in non-
perturbative gauge theory, i.e. in the exact spectrum for finite values of the gauge coupling (or
equivalently for finite string tension and finite P+). One tempting possibility is to generalize
the thermodynamic Bethe ansatz (TBA), originally developed for relativistic integrable models
[48], to the light-cone string theory at hand.

The TBA approach would be based on the following construction. Consider a closed string
of length L ≡ P+ which wraps a loop of ‘time’ length R. The topology of the corresponding
surface spanned by the string is a torus, i.e. the Cartesian product of two orthogonal circles
with circumferences L and R , respectively. According to the imaginary time formalism of
statistical mechanics, the circumference of any of these two circles can be treated as the inverse
temperature for a statistical field theory with the Hilbert space of quantum-mechanical states
defined on the complementary circle. Thus, there are two models related to one and the same
torus: the original theory of strings with length L at temperature 1/R and the ‘mirror’ model
defined on a circle of length R at temperature 1/L. The smaller and the colder the original
theory, the hotter and the bigger its mirror. In particular, the ground-state energy of the original
string model in a finite one-dimensional volume L is equal to the Gibbs free energy (or Witten’s
index in the case of periodic fermions) of the mirror model in infinite volume, i.e. for infinite
R. It should be also possible to relate the whole string spectrum to the proper thermodynamic
quantities of the mirror model defined for infinite R, a problem which is not well understood
at present.

Since the light-cone string sigma model is not Lorentz-invariant, the mirror model is
governed by a different Hamiltonian and therefore has very different dynamics. Thus, to
implement the TBA approach one has to study the mirror theory in detail. The first step in
this direction has been already done in [27], where the Bethe–Yang equations for the mirror
model were derived. Another result obtained in [27] was a classification of the mirror bound
states according to which they comprise the tensor product of two 4Q-dim atypical totally
anti-symmetric multiplets5 of the centrally extended algebra su(2|2). This observation was
of crucial importance for the derivation [46] of the scaling dimension of the Konishi operator.
We consider this derivation as prime evidence for the validity of the mirror theory approach.
Recently two interesting conjectures has been made: one concerns the classification of states

5 Note the difference with the bound states in the original model which transform in symmetric representations!
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contributing in the thermodynamic limit of the mirror theory [49], another formulates the
so-called Y-system [50, 51] which is supposed to encode the finite-size string spectrum [52].

Because of a large amount of necessary material, we decided to split the review into two
parts. The present part I deals with foundations of classical string theory in AdS5 × S5, the
light-cone perturbative quantization and derivation of the light-cone world-sheet scattering
matrix. Part II will include the derivation of the Bethe–Yang equations, the discussion of
bound states and the progress in understanding the finite-size spectrum of the string sigma
model, both in Lüscher’s and in the TBA setting. We will also present yet ‘phenomenological’
arguments which led to the determination of the dressing phase. In the last section of part II
we plan to list the important topics which were uncovered in the present review.

This concludes our brief description of a possible approach to find the spectrum of
quantum strings in AdS5 × S5. At present we do not know if the route we follow is the unique
or the simplest one. Time will tell. In any case, the success we encounter underway makes us
believe that the first ever exact solution of a four-dimensional interacting quantum field theory
is within our reach.

1. String sigma model

In addition to the flat ten-dimensional Minkowski space, type IIB supergravity admits another
maximally supersymmetric solution which is product of the five-dimensional Anti-de-Sitter
space AdS5 and the 5-sphere S5. This solution is supported by the self-dual Ramond–Ramond
5-form flux. The presence of this background flux precludes the usage of the standard NSR
approach to build up the action for strings propagating in this geometry. Indeed, the Ramond–
Ramond vertex operator is known to be non-local in terms of the world-sheet fields and, for
this reason, it is unclear how to couple it to the string world-sheet.

There exists another approach to define string theory for a background geometry supported
by Ramond–Ramond fields—the so-called Green–Schwarz formalism. This formalism has a
further advantage, namely, it allows one to realize the spacetime supersymmetry in a manifest
way. The Green–Schwarz approach can be used for any background obeying the supergravity
equations of motion to guarantee the invariance of the corresponding string action with respect
to the local fermionic symmetry (κ-symmetry), the latter being responsible for the spacetime
supersymmetry of the physical spectrum. In practice, construction of the Green–Schwarz
action for an arbitrary supergravity solution faces a serious difficulty. Namely, starting from
a given bosonic solution, one has to determine the full structure of the type IIB superfield, a
problem that has not been solved so far for a generic background.

Fortunately, there is an alternative approach to define the Green–Schwarz superstring
which makes use of the special symmetry properties of the background solution. This
approach has already been shown to work nicely in the case of a flat background, where
it amounts to defining the Green–Schwarz string as a WZNW-type nonlinear sigma model on
the coset superspace being a quotient of the ten-dimensional super-Poincaré group over its
Lorentz subgroup SO(9, 1). The super-Poincaré group acts naturally on this coset space and
it is a manifest symmetry of the corresponding sigma model action. The Wess–Zumino term
guarantees invariance of the full action under κ-symmetry transformations.

Remarkably, a similar sigma model approach can be developed in the AdS5 × S5 case.
Namely, we define type IIB Green–Schwarz superstring in the AdS5 × S5 background as a
nonlinear sigma-model with target space being the following coset:

PSU(2, 2|4)
SO(4, 1)× SO(5)

. (1.1)
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The supergroup PSU(2, 2|4) contains the bosonic subgroup SU(2, 2)×SU(4)which is locally
isomorphic to SO(4, 2) × SO(6); the quotient of the latter over SO(4, 1) × SO(5) provides
a model of the AdS5 × S5 manifold with SO(4, 1)× SO(5) being the group of local Lorentz
transformations. Correspondingly, the coset (1.1) can be regarded as a model of the AdS5 ×S5

superspace. The group PSU(2, 2|4) which acts on the coset by left multiplications plays the
role of the isometry group of the AdS5 × S5 superspace. Thus, considering a nonlinear sigma-
model with target superspace (1.1) provides a natural way to couple the string world-sheet to
the background Ramond–Ramond fields.

In this section we will describe the corresponding sigma-model in detail. We will discuss
its global and local symmetries and show that it can be embedded into the standard framework
of classical integrable systems.

1.1. Superconformal algebra

The construction of the coset sigma-model essentially relies on the properties of the
superconformal algebra psu(2, 2|4). Here we will summarize the necessary facts about this
algebra and introduce our notation.

1.1.1. Matrix realization of su(2, 2|4). We start our discussion with the definition of the
superalgebra sl(4|4) considered over the field C. As a matrix superalgebra, sl(4|4) is spanned
by 8 × 8 matrices M, which we write in terms of 4 × 4 blocks as

M =
(
m θ

η n

)
. (1.2)

These matrices are required to have vanishing supertrace strM ≡ trm − trn = 0. The
superalgebra sl(4|4) carries the structure of a Z2-graded algebra: the matrices m and n are
regarded as even, and θ, η as odd, respectively. The entries of θ and η can be thought of as
grassmann (fermionic) anti-commuting variables.

The superalgebra su(2, 2|4) is a non-compact real form of sl(4|4). It is identified with a
set of fixed points M
 = M of sl(4|4) under the Cartan involution6 M
 = −HM†H−1. In
other words, a matrix M from su(2, 2|4) is subject to the following reality condition:

M†H +HM = 0. (1.3)

Here the adjoint of the supermatrix M is defined as M† = (Mt)∗ and the Hermitian matrix H
is taken to be

H =
(
� 0
0 114

)
, (1.4)

where � is the following 4 × 4 matrix

� =
(

112 0
0 −112

)
(1.5)

and 11n denotes the n × n identity matrix. We further note that for any odd element θ the
conjugation acts as a C-anti-linear anti-involution

(cθ)∗ = c̄θ∗, θ∗∗ = θ, (θ1θ2)
∗ = θ∗

2 θ
∗
1 ,

which guarantees, in particular, that (M1M2)
† = M†

2M
†
1, i.e. that anti-Hermitian supermatrices

form a Lie superalgebra.

6 It is worthwile to note that our definition of the Cartan involution is different but equivalent to the standard one:
M
 = −iεMHM†H−1, where εM = 0 for even and εM = 1 for odd elements, respectively.
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Condition (1.3) implies that

m† = −�m�, n† = −n, η† = −�θ. (1.6)

Thus, m and n span the unitary subalgebras u(2, 2) and u(4), respectively. The algebra
su(2, 2|4) also contains the u(1)-generator i11, as the latter obeys equation (1.3) and has
vanishing supertrace. Thus, the bosonic subalgebra of su(2, 2|4) is

su(2, 2)⊕ su(4)⊕ u(1). (1.7)

The superalgebra psu(2, 2|4) is defined as a quotient algebra of su(2, 2|4) over this u(1)-
factor. It is important to note that psu(2, 2|4), as the quotient algebra, has no realization in
terms of 8 × 8 supermatrices.

It is convenient to fix a basis for the bosonic subalgebra su(2, 2) ⊕ su(4). Throughout
this work we will use the following representation of Dirac matrices

γ 1 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞⎟⎟⎠, γ 2 =

⎛⎜⎜⎝
0 0 0 i
0 0 i 0
0 − i 0 0

− i 0 0 0

⎞⎟⎟⎠, γ 3 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠,

γ 4 =

⎛⎜⎜⎝
0 0 − i 0
0 0 0 i
i 0 0 0
0 − i 0 0

⎞⎟⎟⎠, γ 5 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ = �,

satisfying the SO(5) Clifford algebra relations

γ iγ j + γ jγ i = 2δij , i, j = 1, . . . , 5.

Note that γ 5 = −γ 1γ 2γ 3γ 4. All these matrices are Hermitian: (γ i)∗ = (γ i)t , so that
iγ i belongs to su(4). The spinor representation of so(5) is spanned by the generators
nij = 1

4 [γ i, γ j ] satisfying the relations

[nij , nkl] = δjknil − δiknjl − δjlnik + δilnjk, nij = −nji . (1.8)

Adding ni6 = i
2 γ

i , one can verify that nij = −nji generate an irreducible (Weyl) spinor
representation of so(6) ∼ su(4) with defining relations (1.8) where now i, j = 1, . . . , 6. The
other Weyl representation would correspond to choosing ni6 = − i

2 γ
i .

Analogously, a set {iγ 5, γ i} with i = 1, . . . , 4 generates the Clifford algebra for SO(4,1).
Indeed, if we introduce γ 0 ≡ iγ 5, then mij = 1

4 [γ i, γ j ] with i, j = 0, . . . , 4 satisfy the
so(4, 1) algebra relations

[mij ,mkl] = ηjkmil − ηikmjl − ηjlmik + ηilmjk, mij = −mji, (1.9)

where η = diag(−1, 1, 1, 1, 1). Enlarging this set of generators by mi5 = 1
2γ

i, i = 0, . . . , 4,
we obtain a realization of so(4, 2) ∼ su(2, 2) with the same defining relations (1.9) where
this time η = diag(−1, 1, 1, 1, 1,−1) and i, j = 0, . . . , 5.

Thus, we regard su(2, 2) and su(4) as real vector spaces spanned by the following set of
generators:

su(2, 2) ∼ spanR

{
1

2
γ i,

i

2
γ 5,

1

4
[γ i, γ j ],

i

4
[γ 5, γ j ]

}
, i, j = 1, . . . , 4,

(1.10)

su(4) ∼ spanR

{
i

2
γ i,

1

4
[γ i, γ j ]

}
, i, j = 1, . . . , 5.

Together with the central element i11, this set of generators provides an explicit basis for the
bosonic subalgebra of su(2, 2|4).
10
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Our next goal is to elaborate more on the structure of the conformal algebra su(2, 2).
Introduce the notation γ ij = 1

4 [γ i, γ j ]. First, we note that the matrices iγ 15, iγ 25, iγ 35, iγ 45

together with γ 1,2,3,4 are block off-diagonal, i.e. in terms of 2 × 2 blocks they span the (real)
eight-dimensional space(

0 •
• 0

)
⊂ su(2, 2).

On the other hand, the matrices γ ij with i, j = 1, . . . , 4 span the so(4) subalgebra embedded
into the conformal algebra diagonally as two copies of su(2)(

su(2) 0
0 su(2)

)
⊂ su(2, 2).

Finally, i
2 γ

5 is diagonal and its centralizer in su(2, 2) coincides with the maximal compact
subalgebra su(2) ⊕ su(2) ⊕ u(1) ⊂ su(2, 2). Sometimes the generator 1

2γ
5 is referred to as

the ‘conformal Hamiltonian’.
Second, consider the one-dimensional subalgebra generated by 1

2γ
3 ≡ − iD. It is usually

called the ‘dilatation subalgebra’. Evidently, in addition to γ 3, the centralizer of γ 3 in su(2, 2)
is generated by γ 12, γ 14, γ 24 and iγ 15, iγ 25, iγ 45. The first three matrices generate so(3),
while, all together, the six matrices generate the Lorentz subalgebra so(3, 1). The orthogonal
complement to so(3, 1) ⊕ iD is the eight-dimensional real space. The basis in this space
can be chosen from eigenvectors of iD. The eigenvectors Ki , i = 1, . . . , 4 with negative
eigenvalues form the subalgebra of special conformal transformation, while the eigenvectors
Pi with positive eigenvalues form the subalgebra of translations.

Finally, we note that the matrices γ 3 and γ 5 are related by an orthogonal transformation

e− π
4 γ

3γ 5
γ 3 e+ π4 γ

3γ 5 = γ 5 (1.11)

implying thereby the well-known relation between the dilatation generatorD and the conformal
Hamiltonian. In unitary representations the operator D must be Hermitian: D† = D. Here
D = i

2 γ
3 is anti-Hermitian which is compatible with the fact that we are dealing with

the finite-dimensional and, therefore, non-unitary representation of the non-compact algebra
su(2, 2).

The following matrix K:

K = −γ 2γ 4 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠, (1.12)

will play a distinguished role in our subsequent discussion. One can check that for all Dirac
matrices the following relation is satisfied:

(γ i)t = Kγ iK−1, i = 1, . . . , 5. (1.13)

Also we define the charge conjugation matrix C = γ 1γ 3 which commutes with K and has the
following properties:

Cγ iC−1 = −(γ i)t , Cγ 5C−1 = (γ 5)t , C2 = −11, i = 1, . . . , 4.

1.1.2. Z4-grading. The outer automorphism group of a Lie algebra plays an important role
in the corresponding representation theory. It appears that for sl(4|4) the outer automorphism
group Out(sl(4|4)) contains continuous and finite subgroups.

11
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Consider the continuous group {δρ, ρ ∈ C∗} which acts on M in the following way:

δρ(M) =
(
m ρθ
1
ρ
η n

)
, (1.14)

i.e. it leaves the bosonic elements untouched and acts on the fermionic elements as a dilatation.
In fact, this transformation is generated by the so-called hypercharge

ϒ =
(

114 0
0 −114

)
(1.15)

and can be formally written in the form δρ(M) = e
1
2ϒ log ρM e− 1

2ϒ log ρ . Of course, the
hypercharge is not an element of sl(4|4) as it has non-vanishing supertrace. On the other hand,

e
1
2ϒ log ρ =

(
ρ

1
2 114 0

0 ρ− 1
2 114

)
. (1.16)

The superdeterminant of this matrix is equal to ρ4. Thus, for ρ satisfying the relation ρ4 = 1,
the corresponding automorphisms δρ are, in fact, inner. Hence, the continuous family of outer
automorphisms of sl(4|4) coincides with the factor-group δρ/{δρ : ρ4 = 1}. We further note
that the automorphism group δρ admits a restriction to su(2, 2|4) provided the parameter ρ
lies on a circle |ρ| = 1.

The finite subgroup of Out(sl(4|4)) coincides with the Klein four-group Z2 × Z2. The
first factor is generated by the transformation

M =
(
m θ

η n

)
→
(
n η

θ m

)
, (1.17)

while the second one is generated by

M → −Mst, (1.18)

where the supertransposeMst is defined as

Mst =
(
mt −ηt
θ t nt

)
. (1.19)

The ‘minus supertransposition’ is an automorphism of order four. We see, however, that

(Mst)st =
(
m −θ
−η n

)
= δ−1(M), (1.20)

which, according to the discussion above, is an inner automorphism. Thus, in the group of
outer automorphisms the order of ‘minus supertransposition’ is indeed two, while in the group
of all automorphisms its order is equal to four.

The fourth-order automorphism M → −Mst allows one to endow sl(4|4) with the
structure of a Z4-graded Lie superalgebra. For our further purposes it is important, however,
to choose an equivalent automorphism7

M → �(M) = −KMstK−1, (1.21)

where K is the 8 × 8-matrix, K = diag(K,K), and the 4 × 4 matrix K is given in equation
(1.12). On the product of two supermatrices one has �(M1M2) = −�(M2)�(M1).

Introducing the notation G = sl(4|4), let us define

G (k) = {M ∈ G ,�(M) = ikM}. (1.22)

7 Although the actions of these two automorphisms are related by the similarity transformation, they introduce
inequivalent Z4-graded structures on sl(4|4).

12
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Then, as a vector space, G can be decomposed into a direct sum of graded subspaces

G = G (0) ⊕ G (1) ⊕ G (2) ⊕ G (3) (1.23)

where [G (k),G (m)] ⊂ G (k+m) modulo Z4. For any matrixM ∈ G its projectionM(k) ∈ G (k) is
given by

M(k) = 1
4 (M + i3k�(M) + i2k�2(M) + ik�3(M)). (1.24)

It is easy to see that the projectionsM(0) andM(2) are even, whileM(1) andM(3) are odd.
While [K,�] = [γ 5, γ 2γ 4] = 0, in general (Mst)† 
= (M†)st. As a result, one finds that

the action of � (anti-) commutes with the Cartan involution:

�(M)† = �(M†) for M even,
(1.25)

�(M)† = −�(M†) for M odd.

In fact, these two formulae can be concisely written as a single expression

�(M)† = ϒ�(M†)ϒ−1 = −(ϒH)�(M)(ϒH)−1, (1.26)

where ϒ is hypercharge (1.15) and we assumed that M ∈ su(2, 2|4). Thus, � admits a
restriction to the bosonic subalgebra of the real form su(2, 2|4). On the whole su(2, 2|4) the
map � is not diagonalizable, since two eigenvalues of � are imaginary: for the projections
M(k) with k = 1, 3 we have �(M(k)) = ±iM(k), while su(2, 2|4) is a Lie superalgebra over
real numbers. Nevertheless, any matrixM ∈ su(2, 2|4) can be uniquely decomposed into the
sum (1.23), where each component M(k) takes values in su(2, 2|4). To make this point clear,
we compute the Hermitian-conjugate ofM(k) given by equation (1.24)

M(k)† = − 1
4H [M + ikϒ�(M)ϒ−1 + i2k�2(M) + i3kϒ�3(M)ϒ−1]H−1

where we made use of equations (1.26) and (1.3). It remains to note that according to equation
(1.20) one has ϒ�(M)ϒ−1 = �3(M) so that M(k)† = −HMH−1, i.e. M(k) belongs to
su(2, 2|4) for any k. Thus, denoting now G = su(2, 2|4), in what follows we will refer to
equation (1.23) as the Z4-graded decomposition of su(2, 2|4), where the individual subspaces
are defined by means of equation (1.24).

According to our discussion, with respect to the action of � the bosonic subalgebra
su(2, 2) ⊕ su(4) ⊕ u(1) ⊂ su(2, 2|4) is decomposed into the direct sum of two graded
components. Working out explicitly the projectionM(0), one finds

M(0) = 1

2

(
m−KmtK−1 0

0 n−KntK−1

)
. (1.27)

Analogously, forM(2) one obtains

M(2) = 1

2

(
m +KmtK−1 0

0 n +KntK−1

)
. (1.28)

At this point it is advantageous to make use of the explicit bases (1.10) for su(2, 2) ⊕ su(4)
introduced in the previous section. According to the discussion there, 1

4 [γ i, γ j ] with
i, j = 1, . . . , 5 generate the subalgebra so(5) ⊂ su(4), while the commutators 1

4 [γ i, γ j ]
and i

4 [γ i, γ 5] with i, j = 1, . . . , 4 generate so(4, 1) ⊂ su(2, 2). Further, the matrix K was
chosen such that the following relations are satisfied

γ i = K(γ i)tK−1, [γ i, γ j ] = −K[γ i, γ j ]tK−1, i, j = 1, . . . , 5. (1.29)

These formulae reveal that the space G (0) in the Z4-graded decomposition of psu(2, 2|4)
coincides with the subalgebra so(4, 1)⊕ so(5) ⊂ su(2, 2)⊕ su(4).

13
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Similarly, comparing the structure of M(2) with equations (1.29), one finds that the
space G (2) is spanned by the matrices {γ 1,2,3,4, iγ 5} ∈ su(2, 2) and {iγ i} ∈ su(4), where
i = 1, . . . , 5. As we will see in section 1.4, these are the Lie algebra generators along the
directions corresponding to the coset space SU(2, 2)×SU(4)/SO(4, 1)×SO(5) = AdS5 ×S5.
The central element i11 ∈ su(2, 2|4) also occurs in the projectionM(2).

To complete the discussion of the Z4-graded decomposition, we also give the explicit
formulae for the odd projections

M(1) = 1

2

(
0 θ − iKηtK−1

η + iKθtK−1 0

)
,

M(3) = 1

2

(
0 θ + iKηtK−1

η − iKθtK−1 0

)
.

(1.30)

1.2. Green–Schwarz string as coset model

For our further discussion, it is convenient to introduce an effective dimensionless string
tension g, which for strings in AdS5 × S5 is expressed through the radius R of S5 and string
slope α′ as g = R2/2πα′. In the AdS/CFT correspondence this tension is related to the ‘t
Hooft coupling constant λ as

g =
√
λ

2π
. (1.31)

We will consider a single closed string propagating in the AdS5 × S5 space. Let coordinates
σ and τ parametrize the string world-sheet which is a cylinder of circumference 2r . For later
convenience we assume the range of the world-sheet spatial coordinate σ to be −r � σ � r ,
where r is an arbitrary constant. The standard choice for a closed string is r = π . The string
action is then

S =
∫

dτ dσL , (1.32)

where L is the Lagrangian density and the integration range for σ is assumed from −r to r.
In this section we outline the construction of the string Lagrangian and also analyze its global
and local symmetries.

1.2.1. Lagrangian. Let g be an element of the supergroup SU(2, 2|4). Introduce the
following 1-form with values in su(2, 2|4)

A = −g−1 dg = A(0) + A(2) + A(1) + A(3). (1.33)

Here on the right-hand side of the last formula we exhibited the Z4-decomposition of A, cf.
equation (1.23). By construction, A has vanishing curvature F = dA − A ∧ A = 0 or, in
components,

∂αAβ − ∂βAα − [Aα,Aβ ] = 0. (1.34)

Now we postulate the following Lagrangian density describing a superstring in the
AdS5 × S5 background

L = −g
2

[
γ αβ str
(
A(2)α A

(2)
β

)
+ κεαβ str

(
A(1)α A

(3)
β

)]
, (1.35)

14
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which is the sum of the kinetic and the Wess–Zumino term. Here we use the convention
ετσ = 1 and γ αβ = hαβ

√−h is the Weyl-invariant combination8 of the world-sheet metric
hαβ with detγ = −1. In the conformal gauge γ αβ = diag(−1, 1). The parameter κ in front of
the Wess–Zumino term has to be a real number to guarantee that the Lagrangian is a real (even)
Grassmann element9. Indeed, assuming κ = κ∗ and taking into account the conjugation rule
for the fermionic entries: (θ1θ2)

∗ = θ∗
2 θ

∗
1 , as well as the cyclic property of the supertrace, we

see that

L ∗ = −g
2

[
γ αβ str
(
A(2)†α A

(2)†
β

)
+ κεαβ str

(
A
(3)†
β A(1)†α

)] = L ,

because all the projections A(i) are pseudo-Hermitian matrices obeying (1.3). Thus, the
Lagrangian (1.35) is real.

Before we motivate formula (1.35), we would like to comment on the Wess–Zumino term.
Originally, this term can be thought of as entering the action in the usual non-local fashion,
i.e. as the following SO(4, 1)× SO(5)-invariant closed 3-form

�3 = str(A(2) ∧ A(3) ∧ A(3) − A(2) ∧ A(1) ∧ A(1)) (1.36)

integrated over a three-cycle with the boundary being a two-dimensional string world-sheet.
The fact that �3 is closed can be easily derived from the flatness condition for A. However,
since the third cohomology group of the superconformal group is trivial the form �3 appears
to be exact

2�3 = d str(A(1) ∧ A(3)) (1.37)

and, as a consequence, the Wess–Zumino term can be reduced to the two-dimensional integral,
cf. equation (1.35).

Consider a transformation

g → gh, (1.38)

where h belongs to SO(4, 1)× SO(5). Under this transformation the 1-form transforms as

A→ h−1Ah − h−1 dh. (1.39)

It is easy to see that for the Z4-components of A this transformation implies

A(1,2,3) → h−1A(1,2,3)h, A(0) → h−1A(0)h − h−1 dh. (1.40)

Thus, the componentA(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (1.35) depends on the group element g. However, as was
shown above, under the right multiplication of g with a local, i.e. σ - and τ -dependent element
h ∈ SO(4, 1)× SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity
transformation leaving the Lagrangian (1.35) invariant. Thus, the Lagrangian actually depends
on a coset element from SU(2, 2|4)/SO(4, 1)× SO(5), rather than on g ∈ SU(2, 2|4).

Recall that in the Z4-decomposition of A ∈ su(2, 2|4) the central element i11 occurs in
the projection A(2). As a result, under the right multiplication of g with a group element from
U(1) corresponding to i11, the component A(2) undergoes a shift

A(2) → A(2) + c · i11.
8 Note the following formula for the inverse metric:

γ αβ =
(−γ 22 γ 12

γ 21 −γ 11

)
.

9 As we will see shortly, the requirement of κ-symmetry leaves two possibilities κ = ±1.
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Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves
the Lagrangian (1.35) invariant. Thus, in addition to so(4, 1)× so(5), we have an extra local
u(1)-symmetry induced by the central element i11. Clearly, this symmetry can be used to gauge
away the trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be
traceless, which can be viewed as the gauge fixing condition for these u(1)-transformations.

The group of global symmetry transformations of the Lagrangian (1.35) coincides with
PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (1.1) by multiplication from the left.
If g ∈ PSU(2, 2|4) is a coset space representative and G is an arbitrary group element from
PSU(2, 2|4), then the action of G on g is as follows:

G : g → g′, (1.41)

where g′ is determined from the following equation:

G · g = g′h. (1.42)

Here g′ is a new coset representative and h is a ‘compensating’ local element from
SO(4, 1) × SO(5). Because of the local invariance under SO(4, 1) × SO(5) the Lagrangian
(1.35) is also invariant under global PSU(2, 2|4)-transformations. The detailed discussion of
these global symmetry transformations will be postponed till section 1.4.

Further justification of the Lagrangian (1.35) comes from the fact that when restricted to
bosonic variables only, it reproduces the usual Polyakov action for bosonic strings propagating
in the AdS5 × S5 geometry. We will present the corresponding derivation in section 1.5.2.

Our next goal is to derive the equations of motion following from equation (1.35). We
first note that ifM1 andM2 are two supermatrices then

str(�k(M1)M2) = str(M1�
4−k(M2)) (1.43)

for k = 1, 2, 3. By using this property, the variation of the Lagrangian density can be cast in
the form

δL = −str(δAα�
α), (1.44)

where

�α = g[γ αβA(2)β − 1
2κε

αβ
(
A
(1)
β − A(3)β

)]
. (1.45)

Taking into account that the variation of Aα is

δAα = −δ(g−1∂αg) = −g−1δgAα − g−1∂α(δg),

we obtain

δL = str[g−1δgAα�
α + g−1∂α(δg)�

α].

Finally, integrating the last term by parts and omitting the total derivative contribution, we
arrive at the following expression for the variation of the Lagrangian density:

δL = −str[g−1δg(∂α�
α − [Aα,�

α])]. (1.46)

Thus, if we regard ∂α�α − [Aα,�α] as an element of su(2, 2|4), then the equations of motion
read as

∂α�
α − [Aα,�

α] = � · 11, (1.47)

where the coefficient � is found by taking the trace of both sides of the last equation. Since
psu(2, 2|4) is understood as the quotient of su(2, 2|4) over its one-dimensional center, in
psu(2, 2|4) the equations of motion take the form

∂α�
α − [Aα,�

α] = 0. (1.48)
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The single equation (1.48) can be projected on various Z4-components. First, one finds
that the projection on G (0) vanishes. Second, for the projection on G (2) we get

∂α
(
γ αβA

(2)
β

)− γ αβ[A(0)α , A(2)β ] + 1
2κε

αβ
([
A(1)α , A

(1)
β

]− [A(3)α , A(3)β ]) = 0, (1.49)

while the for projections on G (1,3) one finds

γ αβ
[
A(3)α , A

(2)
β

]
+ κεαβ
[
A(2)α , A

(3)
β

] = 0,
(1.50)

γ αβ
[
A(1)α , A

(2)
β

]− κεαβ[A(2)α , A(1)β ] = 0.

In deriving these equations we also used the condition of zero curvature for the connection
Aα . Introducing the tensors

Pαβ± = 1
2 (γ

αβ ± κεαβ), (1.51)

equations (1.50) can be written as

Pαβ−
[
A(2)α , A

(3)
β

] = 0, Pαβ+

[
A(2)α , A

(1)
β

] = 0. (1.52)

We further note that for κ = ±1 the tensors P± are orthogonal projectors:

Pαβ+ + Pαβ− = γ αβ, Pαδ± Pβ±δ = Pαβ± , Pαδ± Pβ∓δ = 0. (1.53)

Further, we emphasize the relation between the equations of motion and the global symmetries
of the model (the Noether theorem). Consider the following current:

J α = g�αg−1. (1.54)

Due to equation (1.48), this current is conserved:

∂αJ
α = 0. (1.55)

In fact, J α is nothing else but the Noether current corresponding to global PSU(2,2|4)-
symmetry transformations. The corresponding conserved charge Q is given by the following
integral of the J τ component:

Q =
∫ r

−r
dσJ τ = g

∫ r
−r

dσg

[
γ ττA(2)τ + γ τσA(2)σ − κ

2

(
A(1)σ − A(3)σ

)]
g−1. (1.56)

It is worth pointing out that in the matrix representation the current J α is an element of
su(2, 2|4) and, for this reason, only its traceless part is conserved.

Finally, we also have equations of motion for the world-sheet metric which are equivalent
to vanishing the world-sheet stress-tensor

str
(
A(2)α A

(2)
β

)− 1
2γαβγ

ρδ str
(
A(2)ρ A

(2)
δ

) = 0. (1.57)

These equations are known as the Virasoro constraints and they reflect the two-dimensional
reparametrization invariance of the string action.

In summary, we presented a construction of the superstring Lagrangian based on the
flat connection A. The Lagrangian comprises degrees of freedom corresponding to the coset
space (1.1) and it is invariant with respect to the global PSU(2, 2|4)-symmetry transformations.
The flat connection A allows one to introduce a new current J α which is conserved due to the
superstring equations of motion; the corresponding conserved charge is a generator of these
global symmetry transformations.
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1.2.2. Parity transform and time reversal. In section (1.1.2) we introduced a continuous
group {δρ} of automorphisms of sl(4|4). For ρ restricted to the unit circle this group also
becomes an automorphism group of psu(2, 2|4). In particular, the automorphisms δ−1 and δ±i
are inner. Here we will argue that the action of the elements δ±i on the string Lagrangian (1.35)
can be essentially viewed as the parity transformation or, equivalently, as the time reversal
operation.

More generally, we start our analysis by considering the following transformation:

g′ = UgU−1, (1.58)

where g ∈ PSU(2, 2|4) and U is some global (constant) bosonic matrix. The matrix U should
not however belong to SO(4, 1)× SO(5), as in the opposite case we have already established
the invariance of the string Lagrangian: it is separately invariant under multiplication of g by a
global element U from the left and by a local element V from the right. Under transformation
(1.58) the connection A = −g−1 dg undergoes a change

A→ A′ = UAU−1.

Imposing an extra requirement that U commutes with K, we obtain

�(A′) = −K(UAU−1)stK−1 = (Ut )−1�(A)Ut . (1.59)

This formula allows us to construct the Z4-graded decomposition of the transformed connection
A′. First, we look at the projection A′(2)

A′(2) = 1
4 [A′ −�(A′) +�2(A′)−�3(A′)], (1.60)

which, upon the usage of equation (1.59), takes the form

A′(2) = 1
4 [U(A +�2(A))U−1 − (Ut )−1(�(A) +�3(A))Ut ]. (1.61)

Substituting here the Z4-graded decomposition (1.33) of A, we see that

A′(2) = 1
2 [U(A(0) + A(2))U−1 − (Ut )−1(A(0) − A(2))U t ]. (1.62)

Analogous considerations allow one to establish the formulae for the odd components of the
transformed connection

A′(1) = 1
2 [U(A(1) + A(3))U−1 + (Ut )−1(A(1) − A(3)))U t ],

(1.63)
A′(3) = 1

2 [U(A(1) + A(3))U−1 − (Ut )−1(A(1) − A(3)))U t ].
These expressions suggest to consider the following two cases. The first one corresponds to
taking U such that

UtU = 11, [U,K] = 0. (1.64)

With this choice the transformation formulae (1.62) and (1.63) simplify to

A′(2) = UA(2)U−1, A′(1) = UA(1)U−1, A′(3) = UA(3)U−1. (1.65)

We thus see that the Lagrangian (1.35) remains invariant10, however, there is nothing new here
because the group singled out by the requirements (1.64) is just a subgroup of SO(4, 1)×SO(5).

The second case corresponds to imposing the following requirements:

UtU = ϒ, [U,K] = 0, (1.66)

10 In fact, the Lagrangian remains invariant under a milder assumption on U, namely, UtU = eiα1l, where eiα is an
arbitrary phase. However, this phase plays no role – being absorbed into U, it drops out of the similarity transformation
(1.58). The matrix U corresponding to δ−1 is U = iϒ , so that it commutes with K and obeys UtU = −1l. Thus, the
action of δ−1 leaves the Lagrangian invariant.
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where we omitted an unessential overall phase in front of ϒ , see the footnote 5. Since for any
odd matrix M one has ϒMϒ−1 = −M , expressions (1.62) and (1.63) reduce to

A′(2) = UA(2)U−1, A′(1) = UA(3)U−1, A′(3) = UA(1)U−1.

Thus, in essence, the transformation above exchanges the projections A(1) and A(3). For this
reason, it does not leave the Lagrangian (1.35) invariant, rather it changes the sign in front of
the Wess–Zumino term.

As the simplest solutions to equations (1.66), we can take

U =
(

i
1
2 114 0

0 i−
1
2 114

)
= ei π4 ϒ, (1.67)

which corresponds to the action of δi . We identify U as a matrix corresponding to the parity
transformation P ≡ U . Indeed, under the map σ → −σ the Wess–Zumino term changes its
sign11. This sign change can be then compensated by transformation (1.58) with U given by
(1.67). Thus, under the combined transformation

σ → −σ, g → PgP−1 (1.68)

the action remains invariant. Under P a supermatrix M transforms as follows

M =
(
m θ

η n

)
→ PMP−1 =

(
m iθ

−iη n

)
, (1.69)

i.e. fermions are multiplied by ±i which can be identified as their intrinsic parity.
Before the gauge fixing, σ and τ variables enter the sigma model action on equal footing.

Therefore, one can equally regard the action of U together with the change τ → −τ as the
time reversal operation. In the gauge-fixed theory the time reversal operation acts differently.
We will return to this issue in section 3.

1.2.3. Kappa-symmetry. Kappa-symmetry is a local fermionic symmetry of the Green–
Schwarz superstring. It generalizes the local fermionic symmetries first discovered for massive
and massless superparticles and its presence is crucial to ensure the spacetime supersymmetry
of the physical spectrum. Here we establish κ-symmetry transformations associated with the
Lagrangian (1.35).

Deriving κ-symmetry. Recall that the action of the global symmetry group PSU(2, 2|4)
is realized on a coset element by multiplication from the left. In this respect, κ-symmetry
transformations can be viewed as the right local action ofG = exp ε on the coset representative
g:

g ·G = g′h, (1.70)

where ε ≡ ε(τ, σ ) is a local fermionic parameter taking values in psu(2, 2|4). Here h is a
compensating element from SO(4, 1) × SO(5). The main difference with the case of global
symmetry is that for arbitrary ε the action is not invariant under transformation (1.70). Below
we find the conditions on ε which guarantee the invariance of the action.

First, we note that under local multiplication from the right the 1-form A transforms as
follows

δεA = −dε + [A, ε]. (1.71)

11 The pseudo-tensor εαβ does not change its sign under σ → σ or τ → −τ .
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The Z4-decomposition of this equation gives

δεA
(1) = −dε(1) + [A(0), ε(1)] + [A(2), ε(3)],

δεA
(3) = −dε(3) + [A(2), ε(1)] + [A(0), ε(3)], (1.72)

δεA
(2) = [A(1), ε(1)] + [A(3), ε(3)],

δεA
(0) = [A(3), ε(1)] + [A(1), ε(3)],

where we have assumed that ε = ε(1) + ε(3). By using these formulae, we find for the variation
of the Lagrangian density

− 2

g
δεL = δγ αβ str

(
A(2)α A

(2)
β

)− 2γ αβ str
([
A(1)α , A

(2)
β

]
ε(1) +
[
A(3)α , A

(2)
β

]
ε(3)
)

+ κεαβ str
(
∂αA

(3)
β ε

(1) − ∂αA(1)β ε(3) +
[
A(0)α , ε

(1)
]
A
(3)
β +
[
A(2)α , ε

(3)
]
A
(3)
β

+A(1)α
[
A
(0)
β , ε

(3)
]

+ A(1)α
[
A
(2)
β , ε

(1)
])
. (1.73)

Note that the derivatives of ε have been eliminated by integrating by parts and subsequently
neglecting the corresponding total derivatives. The variation of the world-sheet metric is left
unspecified. The flatness condition (1.34) implies

εαβ∂αA
(1)
β = εαβ[A(0)α , A(1)β ] + εαβ[A(2)α , A(3)β ],

(1.74)
εαβ∂αA

(3)
β = εαβ[A(0)α , A(3)β ] + εαβ[A(1)α , A(2)β ].

Taking into account these formulae, we obtain

− 2

g
δεL = δγ αβ str

(
A(2)α A

(2)
β

)− 4str
(
Pαβ+

[
A
(1)
β , A

(2)
α

]
ε(1) + Pαβ−

[
A
(3)
β , A

(2)
α

]
ε(3)
)
.

For any vector V α we introduce the projections V α±

V α± = Pαβ± Vβ

so that the variation of the Lagrangian acquires the form

− 2

g
δεL = δγ αβ str

(
A(2)α A

(2)
β

)− 4str
([
A(1),α+ , A

(2)
α,−
]
ε(1) +
[
A
(3),α
− , A(2)α,+

]
ε(3)
)
. (1.75)

We further note that from the condition Pαβ± Aβ,∓ = 0 the components Aτ,± and Aσ,± are
proportional

Aτ,± = −γ
τσ ∓ κ
γ ττ

Aσ,±. (1.76)

The crucial point of our construction is the following ansatz for the κ-symmetry parameters
ε(1) and ε(3):

ε(1) = A(2)α,−κ(1),α+ + κ(1),α+ A
(2)
α,−, ε(3) = A(2)α,+κ(3),α− + κ(3),α− A(2)α,+. (1.77)

Here κ(i),α± are new independent parameters of κ-symmetry transformation which are
homogeneous elements of degree i = 1, 3 with respect to �. The correct degree of ε is
inherited from the properties of � (see footnote 2). For instance, one has

�
(
A
(2)
α,−κ

(1),α
+ + κ(1),α+ A

(2)
α,−
)

= −�(κ(1),α+

)
�
(
A
(2)
α,−
)−�(A(2)α,−)�(κ(1),α+

) = i(A(2)α,−κ(1),α+ + κ(1),α+ A
(2)
α,−
)
.

Finally, ε(1,3) ∈ su(2, 2|4) provided the matrices κ(1) and κ(3) satisfy the following reality
conditions

Hκ(1) − (κ(1))†H = 0, Hκ(3) − (κ(3))†H = 0. (1.78)
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As was explained in section 1.1.2, the (traceless) component A(2) taking values in
su(2, 2|4) can be expanded as

A(2) =
(
miγ i 0

0 niγ i

)
, (1.79)

where γ i are the SO(5) Dirac matrices. The coefficients ni are all imaginary, while mi are
real for i = 1, . . . , 4 and imaginary for i = 5. Thus, assuming A(2) to be traceless we can
further write

A
(2)
α,±A

(2)
β,± =
(
miα,±m

j

β,±γ
iγ j 0

0 niα,±n
j

β,±γ
iγ j

)
.

Since the chiral componentsAτ,± andAσ,± are proportional to each other, see equation (1.76),
we can rewrite the last formula as

A
(2)
α,±A

(2)
β,± =
(
miα,±m

j

β,±
1
2 {γ i, γ j } 0

0 niα,±n
j

β,±
1
2 {γ i, γ j }

)
.

This expression can be concisely written as

A
(2)
α,±A

(2)
β,± =
(
miα,±m

i
β,± 0

0 niα,±n
i
β,±

)
= 1

8
ϒ str
(
A
(2)
α,±A

(2)
β,±
)

+ cαβ118 (1.80)

where cαβ = 1
2

(
miα,±m

i
β,± + niα,±n

i
β,±
)

and ϒ is the hypercharge (1.15). In other words, the
product of two A(2)’s entering the variation upon substitution of the ansatz (1.77) appears to
be just a linear combination of two matrices, one of them being the identity matrix and the
other being ϒ .

Therefore, for the variation of the Lagrangian density we find

− 2

g
δεL = δγ αβ str

(
A(2)α A

(2)
β

)− 1

2
str
(
A
(2)
α,−A

(2)
β,−
)

str
(
ϒ[κ(1),β+ , A(1),α+ ]

)
− 1

2
str
(
A(2)α,+A

(2)
β,+

)
str(ϒ[κ(3),β− , A

(3),α
− ]),

where the contribution of the term in equation (1.80) proportional to the identity matrix
drops out. It is now clear that this variation vanishes provided we assume the following
transformation rule for the world-sheet metric under κ-symmetry transformations:

δγ αβ = 1
4 str
(
ϒ
([
κ(1),α+ , A(1),β+

]
+
[
κ(1),β+ , A(1),α+

]
+
[
κ
(3),α
− , A

(3),β
−
]

+
[
κ
(3),β
− , A

(3),α
−
]))
.

This variation is an even symmetric tensor satisfying the identity γαβδγ αβ = 0. Moreover,
the reality conditions for A and κ guarantee that the variation δγ αβ is a tensor with real
components.

It is useful to note that the projectors Pαβ± satisfy the following important identity:

Pαγ± Pβδ± = Pβγ± Pαδ± . (1.81)

This identity allows one to rewrite the variation of the metric in a simpler form

δγ αβ = 1
2 tr
([
κ(1),α+ , A(1),β+

]
+
[
κ
(3),α
− , A

(3),β
−
])
, (1.82)

where we used the fact that the supertrace of any matrix with an insertion of ϒ is the same as
the usual trace of this matrix. It is worthwhile to point out that in our derivation of κ-symmetry
transformations we exploited the fact that Pαβ± are orthogonal projectors and, therefore, the
realization of κ-symmetry requires the parameter κ in front of the Wess–Zumino term to take
one of the values κ = ±1.
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On-shell rank of κ-symmetry transformations. The next important question is to understand
how many fermionic degrees of freedom can be gauged away on-shell by means of κ-symmetry.
To this end, one can make use of the light-cone gauge12. Generically, the light-cone coordinates
x± are introduced by making linear combinations of one field corresponding to the time
direction from AdS5 and one field from S5. Without loss of generality we can assume that the
transversal fluctuations are all suppressed and the corresponding element A(2) has the form

A(2) =
(

ixγ 5 0
0 iyγ 5

)
. (1.83)

Indeed, the matrix iγ 5 corresponds to the time direction in AdS5 and any element from the
tangent space to S5 can be brought to γ 5 by means of an su(4) transformation.

Consider first the κ-symmetry parameter ε(1). In the present context, going on-shell
means the fulfilment of the Virasoro constraint str

(
A
(2)
α,−A

(2)
β,−
) = 0, the latter boils down to

x2 = y2, i.e. to y = ±x. According to equation (1.72), we have

ε(1) = A(2)τ,−� + �A(2)τ,−, � ≡ κ(1),τ+ − γ ττ

γ τσ ∓ κ κ
(1),σ
+ . (1.84)

Picking, e.g., the solution y = x, we compute the element ε(1). Plugging equation (1.83) into
equation (1.13) and assuming for the moment that � is generic, i.e. that it depends on 32
independent (real) fermionic variables, we obtain

ε(1) = 2ix

(
0 ε

−ε†� 0

)
, (1.85)

where ε is the following matrix:

ε =

⎛⎜⎜⎝
�11 �12 0 0
�21 �22 0 0
0 0 −�33 −�34

0 0 −�43 −�44

⎞⎟⎟⎠ (1.86)

and �ij are the entries of the matrix �. As we see, the matrix ε depends on eight independent
complex fermionic parameters. Now we can account for the fact that the odd matrix � belongs
to the homogeneous component G (1) which reduces the number of independent fermions by
half. As a result, ε(1) depends on eight real fermionic parameters. A similar analysis shows
that ε(3) will also depend on other eight real fermions. Thus, in total ε(1) and ε(3) involve 16 real
fermions and these are those degrees of freedom which can be gauged away by κ-symmetry.
The gauge-fixed coset model will therefore involve 16 physical fermions only.

The above analysis, especially equations (1.85) and (1.86), show that κ-symmetry suffice
to bring a generic odd element of su(2, 2|4) to the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 • •
0 0 0 0 0 0 • •
0 0 0 0 • • 0 0
0 0 0 0 • • 0 0
0 0 • • 0 0 0 0
0 0 • • 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.87)

12 String theory in the light-cone gauge will be treated in great detail in the following section.
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where bullets stand for odd elements which cannot be gauged away by κ-symmetry
transformations. We thus consider (1.87) as a convenient κ-symmetry gauge choice and
we will implement it in our construction of the light-cone string action in the following
section.

1.3. Integrability of classical superstrings

In this section we show that the nonlinear sigma model describing strings on AdS5 × S5 is
a classical two-dimensional integrable system. This opens up the possibility of analyzing it
by means of techniques developed in the theory of integrable models. We start with recalling
the general concept of integrability and then we demonstrate integrability of the string sigma
model by constructing the zero-curvature representation of the corresponding equations of
motion. Finally, we discuss the relationship between integrability and the local, and global
symmetries of the string model.

1.3.1. General concept of integrability. The classical inverse scattering method, i.e. the
method of finding a certain class of solutions of nonlinear integrable partial differential
equations, is based on a remarkable observation that a two-dimensional partial differential
equation arises as the consistency condition of the following overdetermined system of
equations:

∂�

∂σ
= Lσ (σ, τ, z)�, ∂�

∂τ
= Lτ (σ, τ, z)�, (1.88)

which is sometimes referred to as the fundamental linear problem. Here � ≡ �(σ, τ, z) is
a vector of rank r and Lσ ≡ Lσ (σ, τ, z) and Lτ ≡ Lτ (σ, τ, z) are properly chosen r × r

matrices. Both � and Lσ ,Lτ depend on an additional spectral parameter z taking values
in the complex plane13. Differentiating the first equation in (1.88) with respect to τ and the
second one with respect to σ , we obtain

∂2�

∂τ∂σ
= ∂τLσ� + Lσ∂τ� = (∂τLσ + LσLτ )�,

∂2�

∂σ∂τ
= ∂σLτ� + Lτ∂σ� = (∂σLτ + LτLσ )�,

which implies the fulfilment of the following consistency condition:

∂τLσ − ∂σLτ + [Lσ ,Lτ ] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-Abelian
connection Lα with components Lτ and Lσ , then the consistency condition derived above can
be reinstated as vanishing of the curvature of Lα

∂αLβ − ∂βLα − [Lα,Lβ] = 0. (1.89)

The matrices Lτ and Lσ must be chosen in such a way that the zero-curvature condition above
should imply the fulfilment of the original differential equation for all values of the spectral
parameter. A connection Lα with these properties is known as the Lax connection (or the Lax
pair), while equation (1.89) as the zero-curvature (Lax) representation of an integrable partial
differential equation.

13 In more complicated situations the spectral parameter can live on a higher genus Riemann surface.
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For a given integrable partial differential equation the Lax connection is by no
means unique. Even the rank r of the matrices Lα can be different for different Lax
representations. Also, the condition of zero curvature (1.89) is invariant with respect to
the gauge transformations

Lα → L′
α = hLαh−1 + ∂αhh

−1, (1.90)

where h is an arbitrary matrix, in general depending on dynamical variables of the model and
the spectral parameter.

Conservation laws. The usefulness of the Lax connection lies in the fact that for a given
integrable model it provides a canonical way to exhibit the conservation laws (integrals of
motion) which is usually the first step in constructing explicit solutions of the corresponding
equations of motion. Indeed, the one-parameter family of flat connections allows one to define
the monodromy matrixT (z)which is the path-ordered exponential of the Lax componentLσ (z)

T (z) = ←−
exp
∫ 2π

0
dσLσ (z). (1.91)

For definiteness, we assume that a model is defined on a circle 0 � σ < 2π and all dynamical
variables are periodic functions of σ .

Let us derive the evolution equation for this matrix with respect to the parameter τ . We
have

∂τT (z) =
∫ 2π

0
dσ

[
←−
exp
∫ 2π

σ

Lσ

]
∂τLσ

[
←−
exp
∫ σ

0
Lσ

]
=
∫ 2π

0
dσ

[
←−
exp
∫ 2π

σ

Lσ

]
(∂σLτ + [Lτ , Lσ ])

[
←−
exp
∫ σ

0
Lσ

]
,

where in the last formula we used the flatness of Lα . Now we note that the integrand of the
expression above is the total derivative

∂τT (z) =
∫ 2π

0
dσ∂σ

[(
←−
exp
∫ 2π

σ

Lσ

)
Lτ

(
←−
exp
∫ σ

0
Lσ

)]
. (1.92)

Given that the Lax connection is a periodic function of σ , for the monodromy we find the
following evolution equation:

∂τT (z) = [Lτ (0, τ, z), T (z)]. (1.93)

This important formula implies that the eigenvalues of T (z) defined by the characteristic
equation

�(z, μ) ≡ det(T (z)− μ11) = 0 (1.94)

do not depend on τ , in other words they are integrals of motion. Thus, the spectral properties
of the model are encoded into the monodromy matrix. Equation (1.94) defines an algebraic
curve in C2 called the spectral curve.

An alternative way to obtain the evolution equation (1.93) is to notice that T (τ) introduced
above represents the monodromy of a solution of the fundamental linear problem

�(2π, τ) = T (τ)�(0, τ ).
Indeed, if we differentiate this equation with respect to τ , we get

∂τ�(2π, τ) = ∂τT (τ )�(0, τ ) + T (τ)∂τ�(0, τ ),

which, according to the fundamental linear system, gives

Lτ (2π, τ)T (τ)�(0, τ ) = ∂τT (τ )�(0, τ ) + T (τ)Lτ (0, τ )�(0, τ ).

This relation implies the evolution equation (1.93).
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An example: principal chiral model. To familiarize the reader with the concept of
integrability, we consider, as an example, the so-called principal chiral model. This integrable
system is rather similar but much simpler than the string sigma model introduced in the
previous section and, therefore, our discussion here will provide a necessary warm-up before
an actual handling of string integrability.

The principal chiral model is a nonlinear sigma model based on a field g ≡ g(σ, τ ) with
values in a Lie group. The action reads

S = −1

2

∫
dτ dσγ αβ tr(∂αgg−1∂βgg−1),

where γ αβ is the Weyl-invariant metric introduced in section 1.2.1. Equations of motion are

∂α(γ
αβ∂βgg−1) = ∂α(γ αβg−1∂βg) = 0, (1.95)

and they can be conveniently written in terms of the left and right currents

Aαl = −γ αβ∂βgg−1, Aαr = −γ αβg−1∂βg (1.96)

as

∂αA
α
l = 0 = ∂αAαr .

One can easily see thatAl andAr are the Noether currents corresponding to multiplications of
g by a constant group element from the left g → hg and from the right g → gh, respectively.
These shifts from the left and from the right constitute the global symmetries of the model.

Introduce the following connection:

Lα = �1Aα + �2γαβε
βρAρ, (1.97)

where �1 and �2 are two undetermined parameters andA is eitherAr orAl . In two dimensions
the zero-curvature condition (1.89) can be equivalently written as

2εαβ∂αLβ − εαβ[Lα,Lβ ] = 0. (1.98)

Now we want to determine the coefficients �1 and �2 by requiring the fulfilment of equation
(1.98) on-shell. Taking into account the following identity:

εαβγβρε
ρδ = γ αδ, (1.99)

a simple computation reveals that equation (1.98) for the connection (1.97) reduces to

2�1ε
αβ∂αAβ − (�2

1 − �2
2

)
εαβ[Aα,Aβ ] + 2�2∂αA

α = 0.

The last term vanishes due to the equations of motion. As to the first two terms, we recall that
both Ar or Al are flat, i.e.

∂αAβ − ∂βAα ± [Aα,Aβ ] = 0,

where the minus in front of the commutator term is for the right current and the plus for the
left one, respectively. Thus, the first two terms will vanish due to the flatness of A provided
the parameters � are related as

�2
1 − �2

2 − �1 = 0 for A = Ar,
�2

1 − �2
2 + �1 = 0 for A = Al. (1.100)

Both equations can be resolved in term of a single free parameter z so that we find two Lax
formulations of the equations of motion of the principal chiral model

Lrα = − z2

1 − z2
Arα +

z

1 − z2
γαβε

βρArρ,

(1.101)

Llα = z2

1 − z2
Alα +

z

1 − z2
γαβε

βρAlρ.
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The parameter z plays now the role of the spectral parameter of the model. Both Lax
connections exhibit first-order poles at z = ±1. These poles play a very special role. As we
will see later, expanding the trace of the monodromy matrix around these poles leads to an
explicit construction of local conserved charges. We also note that the leading term in the
expansion of L’s around z = ∞ (z = 0) coincides with the Noether current (the Hodge dual
of the Noether current) corresponding to right or left global symmetries of the model. Finally,
we remark that the connections Lr and Ll are related by the gauge transformation

Ll = hLrh−1 + dhh−1

with h = g, which means that they are essentially equivalent.
Now we turn our attention to the construction of the Lax representation for our string

sigma model.

1.3.2. Lax pair. To build up the zero-curvature representation of the string equations of
motion, we start with the following ansatz for the Lax connection Lα:

Lα = �0A
(0)
α + �1A

(2)
α + �2γαβε

βρA(2)ρ + �3A
(1)
α + �4A

(3)
α , (1.102)

where �i are undetermined constants and A(k) are the Z4-components of the flat connection
(1.33). The connection Lα is required to have zero curvature (1.89) as a consequence of
the dynamical equations (1.48) and the flatness of Aα . This requirement will impose certain
constraints on �i , much similar to the case of the principal chiral model discussed in the
previous section.

Computing the curvature of Lα , we expand the resulting expression into the sum of the
homogeneous components G (k) under the Z4-grading. First, the projection on G (0) reads

2�0ε
αβ∂αA

(0)
β − εαβ(�2

0

[
A(0)α , A

(0)
β

]
+
(
�2

1 − �2
2

)[
A(2)α , A

(2)
β

]
+ 2�3�4

[
A(1)α , A

(3)
β

]) = 0.

The flatness of A(0) then implies

�0 = 1, �2
1 − �2

2 = 1, �3�4 = 1. (1.103)

Second, for the projection on G (2) we find

�1ε
αβ∂αA

(2)
β + �2∂α

(
γ αβA

(2)
β

)− (εαβ�0�1 + γ αβ�0�2)
[
A(0)α , A

(2)
β

]
− 1

2ε
αβ�2

3

[
A(1)α , A

(1)
β

]− 1
2ε
αβ�2

4

[
A(3)α , A

(3)
β

] = 0.

Using the flatness condition for A(2), we can bring this equation to the form

∂α
(
γ αβA

(2)
β

)− γ αβ[A(0)α , A(2)β ]− εαβ (�2
3 − �1
)

2�2

[
A(1)α , A

(1)
β

]− εαβ (�2
4 − �1
)

2�2

[
A(3)α , A

(3)
β

] = 0.

The last expression coincides with the string equations of motion (1.49) provided

�2
3 − �1

�2
= −κ, �2

4 − �1

�2
= κ. (1.104)

Third, projections on G (1) and G (3) are

�3ε
αβ∂αA

(1)
β − εαβ�0�3

[
A(0)α , A

(1)
β

]− εαβ�1�4
[
A(2)α , A

(3)
β

]
+ γ αβ�2�4

[
A(2)α , A

(3)
β

] = 0,

�4ε
αβ∂αA

(3)
β − εαβ�0�4

[
A(0)α , A

(3)
β

]− εαβ�1�3
[
A(2)α , A

(1)
β

]
+ γ αβ�2�3

[
A(2)α , A

(1)
β

] = 0.

Once again, by invoking the flatness of A(1,3), we can rewrite these equations as follows:(
γ αβ − �1�4 − �3

�2�4
εαβ
) [
A(2)α , A

(3)
β

] = 0,(
γ αβ +

�4 − �1�3

�2�3
εαβ
) [
A(2)α , A

(1)
β

] = 0.
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These will coincide with the string equations (1.52) provided

�1�4 − �3

�2�4
= κ, �4 − �1�3

�2�3
= κ. (1.105)

Summing up equations (1.104), we find

2�1 = �2
3 + �2

4. (1.106)

The same condition follows from equations (1.105) upon taking into account that �3�4 = 1.
Furthermore, it appears that the parameter κ gets fixed up to the sign. Indeed, multiplying
equations (1.105) and using equations (1.103), (1.106), we get

κ2 = 1, (1.107)

which is precisely the condition for having κ-symmetry! Thus, we have obtained a striking
result: integrability of the equations of motion for the Lagrangian (1.35), i.e. existence of the
corresponding Lax connection, implies that the model possesses κ-symmetry.

Proceeding, we uniformize the parameters �i in terms of a single variable z taking values
on the Riemann sphere

�0 = 1, �1 = 1

2

(
z2 +

1

z2

)
,

(1.108)

�2 = − 1

2κ

(
z2 − 1

z2

)
, �3 = z, �4 = 1

z
.

The reader can easily verify that these �i solve all the constraints imposed by the zero curvature
for Lα . For a given κ = ±1, there is a unique Lax connection which is a meromorphic matrix-
valued function on the Riemann sphere.

Finally, we point out how the grading map � acts on the Lax connection Lα . Since � is
an automorphism of sl(4|4), the curvature of �(Lα) also vanishes. It can be easily checked
that �(Lα) is related to Lα by a certain diffeomorphism of the spectral parameter, namely,

�(Lα(z)) = Lα(iz),
i.e. z undergoes a rotation by the angle π/2. Using the explicit form of �, we can write the
last relation as

KLst
α (z)K−1 = −Lα(iz). (1.109)

Since z is complex, the Lax connection takes values in sl(4|4) rather than in su(2, 2|4).
Obviously, the action of � on Lα is compatible with the fact that � is the fourth-order
automorphism of sl(4|4).

Finally, we mention the action of the parity transformation (1.67) on the Lax connection.
Under σ → −σ we have Aτ → Aτ and Aσ → −Aσ . Thus,

PLτ (z)|σ→−σP−1 = LP
τ (1/z), PLσ (z)|σ→−σP−1 = −LP

σ (1/z),

where we have taken into account that the parity transformation exchanges14 the projections
A(1) and A(3). Here LP

α is the same connection (1.102) where g(σ ) in Aα = −g−1∂αg is
replaced by gP(σ ) = g(−σ). Obviously, LP

α retains vanishing curvature.
In summary, we have shown that the string equations of motion admit zero-curvature

representation which ensures their kinematical integrability. We have also seen that inclusion
of the Wess–Zumino term into the string Lagrangian is allowed by integrability only for
κ = ±1, i.e. only for those values of κ for which the model has κ-symmetry.

14 Specifying an explicit dependence of the Lax connection on κ as Lα(z, κ), we see that without changing σ → −σ
the connection enjoys the following property PLα(z, κ)P−1 = Lα(1/z,−κ).

27



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

1.3.3. Integrability and symmetries. In the previous section we have shown that string
equations of motion admit the Lax representation provided the parameter κ in the Lagrangian
takes values ±1. It is for these values of κ that the model exhibits the local fermionic symmetry.
In addition to the κ-symmetry, the string sigma model has the usual reparametrization
invariance. Due to these local symmetries not all degrees of freedom appearing in the
Lagrangian (1.35) are physical. Thus, ultimately we would like to understand if and how
integrability is inherited by the physical subspace which is obtained by making a gauge
choice and imposing the Virasoro constraints. In this section we will make a first step in this
direction by analyzing in detail the transformation properties of the Lax connection under the
κ-symmetry and diffeomorphism transformations. We also indicate a relation between the
Lax connection and the global psu(2, 2|4) symmetry of the model.

We start with the analysis of the relationship between the Lax connection and κ-symmetry.
Recalling equations (1.72) which describe how the Z4-components of A transform under κ-
symmetry, it is straightforward to find15

δLα = [Lα,�] − ∂α� + (�4 − �1�3)
[
A(2)α , ε

(1)
]− �2�3

[
εαβγ

βδA
(2)
δ , ε

(1)
]

+
[(
�1 − �2

3

)
A(1)α + �2εαβγ

βδA
(1)
δ , ε

(1)
]

+ �2εαβδγ
βδA

(2)
δ .

Here � = �3ε
(1). Taking into account the relations between the coefficients �i found in the

previous section from the requirement of integrability, the last formula can be cast into the
form

δLα = [Lα,�] − ∂α� + �2�3εαβ[A(2),β− , ε(1)] + �2εαβ
(
2
[
A(1),β+ , ε(1)

]
+ δγ βδA(2)δ

)
.

The�-dependent term here is nothing else but an infinitesimal gauge transformation of the Lax
connection. Under this transformation, the curvature of the transformed connection retains its
zero value. On the other hand, the last two terms proportional to �2�3 and �2 would destroy
the zero-curvature condition unless they (separately) vanish. It turns out that vanishing of
these terms is equivalent to the requirement of the Virasoro constraints as well as equations of
motion for the fermions! Consider the first term

I1 ≡ [A(2)α,−, ε(1)] = [A(2)α,−, A(2)β,−κ(1),β+ + κ(1),β+ A
(2)
β,−
] = 1

8 str
(
A
(2)
α,−A

(2)
β,−
)[
ϒ, κ(1),β+

]
.

Here we used equation (1.80) and also equation (1.76) stating thatA(2)α,− andA(2)β,− with different
α and β are proportional to each other. It is not hard to prove that

str
(
A
(2)
α,−A

(2)
β,−
) = 0

implies fulfilment of the Virasoro constraint (1.57) and vice versa.
The second unwanted term involves an expression

I2 ≡ [A(1),α+ , ε(1)
] = [A(1),α+ , A

(2)
β,−κ

(1),β
+ + κ(1),β+ A

(2)
β,−
] = [A(1),β+ , A

(2)
β,−κ

(1),α
+ + κ(1),α+ A

(2)
β,−
]
,

where we made use of the identity (1.81). Taking into account the equation of motion for
fermions,

[
A
(1),β
+ , A

(2)
β,−
] = 0, the last formula boils down to

I2 = A(2)β,−
[
A(1),β+ , κ(1),α+

]
+
[
A(1),β+ , κ(1),α+

]
A
(2)
β,−.

Since the commutator
[
A
(1),β
+ , κ

(1),α
+

]
belongs to the space G (2), we can write[

A(1),β+ , κ(1),α+

] = (maγ a 0
0 naγ a

)
+

1

8
str
(
ϒ
[
A(1),β+ , κ(1),α+

])
11,

for some coefficients ma and na . Therefore,

I2 =
{
A
(2)
β,−,
(
maγ a 0

0 naγ a

)}
+

1

4
str
(
ϒ
[
A(1),β+ , κ(1),α+

])
A
(2)
β,−

15 For our present purposes it is enough to consider a variation with non-trivial ε(1) only.
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Expanding the elementA(2)β,− over the Dirac matrices and substituting it in the anti-commutator
above, we see that, due to the Clifford algebra, 2I2 must have the following structure

2I2 = ρ111 + ρ2ϒ − 1
2 str
(
ϒ
[
κ(1),α+ , A(1),β+

])
A
(2)
β,−. (1.110)

Actually, the coefficient ρ2 must vanish as the supertrace of I2 equals zero (this follows from
the original definition of I2 as a commutator of two terms). The last term proportional to
A
(2)
β,− will then cancel in equation (1.110) the term containing the variation of the metric

δγ αβA
(2)
β = δγ αβA

(2)
β,−. Finally, the term in equation (1.110) proportional to the identity

matrix is unessential because the Lax representation is understood modulo an element i11.
Thus, we have obtained the following important result. Although the Virasoro constraints

(1.57) do not apparently follow from the zero-curvature condition, we see that upon κ-
symmetry transformations the Lax connection retains its zero curvature if and only if the
Virasoro constraints (and equations of motion for fermions) are satisfied. This shows that the
local symmetries of the model and the existence of the Lax connection are tightly related to
each other.

Let us now show that diffeomorphisms also induce gauge transformations of the Lax
connection. Indeed, under a diffeomorphism σα → σα +f α(σ ) any 1-form and, in particular,
the Lax connection transforms as follows:

δLα = f β∂βLα + Lβ∂αf
β. (1.111)

Using the zero-curvature condition for Lα , we can rewrite the last formula as

δLα = f β(∂αLβ + [Lβ,Lα]) + Lβ∂αf
β = ∂α(f βLβ) + [f βLβ, Lα], (1.112)

which is a gauge transformation with aparameter f βLβ .
Now we explain the interrelation between the Lax connection and the generators of the

global psu(2, 2|4) symmetry. So far our discussion of the Lax connection was based on
the 1-form A = −dgg−1 which, as the reader undoubtedly noted, is analogous to the right
connection of the principal chiral model. At z = 1 the Lax connection (1.108) turns into Aα .
As we have already mentioned, the condition of zero curvature (1.89) is invariant with respect
to the gauge transformations

L→ L′ = hLh−1 + dhh−1.

The inhomogeneous term on the right-hand side does not depend on z and, therefore, this
gauge freedom can be used to gauge away the constant piece A arising at z = 1. For this one
has to take h = g. Indeed, define a(i) = gA(i)g−1 and represent the ‘dual’ 1-form Ã = −dgg−1

in the following way:

Ã = gAg−1 = g(A(0) + A(1) + A(2) + A(3))g−1 = a(0) + a(1) + a(2) + a(3).

Then the result of the gauge transformation of L takes the form

Lα = �0a
(0)
α + �1a

(2)
α + �2γαβε

βρa(2)ρ + �3a
(1)
α + �4a

(3)
α , (1.113)

where �0 = 0 and the other coefficients �i are given by

�1 = (1 − z2)2

2z2
, �2 = − 1

2κ

(
z2 − 1

z2

)
, �3 = z− 1, �4 = 1

z
− 1.

Expanding this connection around w = 1 − z
Lα = 2w

κ
Lα + · · · , (1.114)

we discover that the leading term Lα is

Lα = γαβεβρa(2)ρ − κ

2

(
a(1)α − a(3)α

)
.
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The zero-curvature condition is satisfied at each order in w; at first order in w it gives

∂αLβ − ∂βLα = 0 �⇒ ∂α(ε
αβLβ) = 0,

which is obviously the conservation law for a non-Abelian current

J α = gεαβLβ = g
[
γ αβa

(2)
β − κ

2
εαβ
(
a
(1)
β − a(3)β

)]
. (1.115)

Comparing the last expression with equations (1.45), (1.54), we conclude that J α is just the
Noether current corresponding to the global psu(2, 2|4) symmetry of the model. The dual
1-form Ã is an analog of the left connection of the principal chiral model.

One can analyze the expansion of the Lax connection around z = −1 in a similar fashion.
Expanded around z = −1, the connection exhibits a constant piece which can be gauged
away by a proper gauge transformation. After this is done, at order (z + 1) one finds a
non-Abelian conserved current, which is again the Noether current generating the global
psu(2, 2|4)-symmetry.

1.4. Coset parametrizations

This section is devoted to the discussion of various embeddings of the coset space (1.1) into
the supergroup SU(2, 2|4). We put an emphasis on a particular embedding which is most
suitable for the light-cone gauge fixing. We also identify a bosonic subalgebra of the full
symmetry algebra which acts linearly on the coordinates of the coset space.

1.4.1. Coset parametrization. To give an explicit expression for the Lagrangian density
(1.35) in terms of the coset degrees of freedom varying over the two-dimensional world-
sheet, it is necessary to choose an embedding of the coset element (1.1) into the supergroup
SU(2, 2|4). This can be done in many different ways, all of them are related by nonlinear field
redefinitions. Before we motivate our preferred coset parametrization, we need to describe
the space G (2) constituting the orthogonal complement of so(4, 1) ⊕ so(5) in the bosonic
subalgebra of psu(2, 2|4).

The space G (2) ⊂ G = psu(2, 2|4) is spanned by solutions to the following equation:

KMstK−1 = M,
which for M even is equivalent to

Mt = KMK−1.

According to the discussion of section 1.1.2, the matrices M = M(2) solving the equation
above can be parametrized as

M = 1

2

(
itγ 5 + ziγ i 0

0 iφγ 5 + iyiγ i

)
, (1.116)

where the summation index i runs from 1 to 4. As will be explained in appendix 1.5.1,
the coordinates t, zi cover the AdS5 space, while φ, yi cover the 5-sphere. In particular, φ
parametrizes a big circle in S5 and it has range 0 � φ < 2π . More generally, since we deal
with closed strings, the global coordinates on the sphere must be periodic functions of σ . On
the other hand, φ is an angle and, therefore, one can have configurations with a non-trivial
winding

φ(2π)− φ(0) = 2πm, (1.117)

where m is an integer. All the coordinates are assumed to be periodic functions of σ (we do
not allow winding in the time direction).
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One obvious way to define an embedding of the AdS5 × S5 space into the bosonic
subgroup of SU(2, 2|4) is just to exponentiate an element (1.116)

gb = exp
1

2

(
itγ 5 + ziγ i 0

0 iφγ 5 + iyiγ i

)
.

The fermionic degrees of freedom can be incorporated in the following group element:

gf = expχ, χ =
(

0 �

−�†� 0

)
. (1.118)

A group element describing an embedding of the coset space (1.1) into SU(2, 2|4) can be then
constructed as

g = gfgb. (1.119)

Clearly, this is just one of infinitely many ways to choose a coset representative; for instance,
one could also define g = gbgf.

It appears, however, that the choice (1.119) is particularly convenient to manifest the
global bosonic symmetries of the model, because the latter act linearly on fermionic variables.
Indeed, the symmetry group acts on a coset element by multiplication from the left, see
equations (1.41) and (1.42). If a coset element is realized as in equation (1.119), then the
action of G ∈ SU(2, 2)× SU(4) preserves the structure of the fermionic coset representative

G · g = GgfG
−1 ·Ggb = GgfG

−1 · g′
bh,

where h is a compensating element from SO(4, 1) × SO(5). From here we deduce that the
matrix gf transforms as

gf → GgfG
−1 = expGχG−1.

Thus, fermions undergo the adjoint (linear) action of G, while bosons generically transform in
a nonlinear fashion: gb → g′

b
. In particular, fermions are charged under all Cartan generators

of psu(2, 2|4), the latter represents a set of commuting u(1)-isometries of the coset space
(1.1).

Another reason to choose a coset representative (1.119) is that in this case supersymmetry
transformations act on the fermionic and bosonic variables in a simple way. Indeed, under an
infinitesimal supersymmetry transformation with a fermionic parameter ε the coset variables
undergo the following transformation:

δεχ = ε, δεgb = 1
2 [ε, χ ]gb − gbh, (1.120)

where h is a compensating element from SO(4, 1) × SO(5). The last formula makes it
obvious that invariance of the model under supersymmetry transformations requires fermionic
variables in the representation (1.119) to be periodic functions of σ .

As will be discussed in the following section, fixing the light-cone gauge is greatly
facilitated by working with fermions which are neutral under the isometries corresponding to
shifts of the AdS time t and the sphere angle φ. By the above, fermions of the coset element
(1.119) do not meet this requirement. The idea is, therefore, to redefine the original fermionic
variables in such a fashion that they become neutral under the isometries related to t and φ.
This can be understood in the following way. Introduce a diagonal matrix

�(t, φ) = exp

( i
2 tγ

5 0

0 i
2 φγ

5

)
(1.121)

with the property �(t1 + t2, φ1 + φ2) = �(t1, φ1)�(t2, φ2), and the following exponential:

g(X) = exp X, X =
(

1
2z
iγ i 0

0 i
2 y

iγ i

)
. (1.122)
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Now, instead of (1.119), consider a new parametrization of the coset representative

g = �(t, φ)g(χ)g(X), (1.123)

where g(χ) ≡ gf. Obviously, an element G corresponding to global shifts t → t+a, φ → φ+b
can be identified with �(a, b). Thus, under the left multiplication

G · g = �(a, b)�(t, φ)g(χ)g(X) = �(t + a, φ + b)g(χ)g(X), (1.124)

i.e. bothχ and X remain untouched by this transformation. In other words, with our new choice
(1.123), not only the fermions χ but also all the remaining eight bosons zi and yi , appear to
be neutral under the isometries related to t and φ ! This property motivates our choice (1.123).
In fact, coset representatives (1.119) and (1.123) are related to each other by a nonlinear field
redefinition, which for fermionic variables is of the form χ → �(t, φ)χ�(t, φ)−1.

It should be noted, however, that nonlinear field redefinitions can change the boundary
conditions for the world-sheet fields. In parametrization (1.119) fermions χ transform linearly
under all bosonic symmetries and they are periodic functions of σ . To pass to parametrization
(1.123), we redefine

χ → χ ′ = �−1χ� �⇒ �→ �′ = e
i
2 (φ−t)γ5�, (1.125)

where we have invoked the parametrization (1.118). As a result, the new fermions satisfy the
following boundary conditions:

�′(σ + 2π) = eiπmγ5�′(σ ), (1.126)

i.e. they remain periodic for m even (the even winding number sector) and they become
anti-periodic for m odd (the odd winding number sector).

We conclude our discussion of coset representatives by emphasizing that given the
structure (1.123), one is entirely free to choose parametrizations for g(χ) and g(X) different
from those in equations (1.118) and (1.122). In particular, in appendix 1.5.2 we describe
another useful choice for the element g(X).

1.4.2. Linearly realized bosonic symmetries. Well adjusted to the light-cone gauge,
parametrization (1.123) does not allow for a linear realization of all the bosonic symmetries.
Our next task is, therefore, to determine a maximal subgroup of the bosonic symmetry group
which acts linearly on the dynamical fields X and χ . This subgroup will then coincide with
the manifest bosonic symmetry of the light-cone gauge-fixed string Lagrangian.

It is easy to see that the centralizer of the u(1)-isometries corresponding to shifts of t and
φ in the algebra su(2, 2)⊕ su(4) coincides with

C = so(4)⊕ so(4) = su(2)⊕ su(2)⊕ su(2)⊕ su(2), (1.127)

where the first factor is so(4) ⊂ so(4, 1) ⊂ so(4, 2) and the second one so(4) ⊂ so(5) ⊂
so(6). Indeed, both copies of so(4) are generated by 1

4 [γ i, γ j ], i, j = 1, . . . , 4 because
the latter matrices commute with iγ 5 generating shifts in the t- or φ-directions. Let
now G be a group element corresponding to a Lie algebra element from (1.127). Then
G�(t, φ)G−1 = �(t, φ). Due this condition, one gets

G · g = �(t, φ) ·Gg(χ)G−1 ·Gg(X)G−1 ·G.
Now one can recognize that the last G in the right-hand side of this formula is nothing
else but the compensating element h from SO(4, 1) × SO(5): h = G. Indeed, the adjoint
transformation with G preserves the structure of the coset element g(X), because the generator
1
4 [γ i, γ j ] commutes with γ k for j 
= k 
= i and is equal to 2γ j for k = j . Thus, under the
action of G both bosons and fermions undergo a linear transformation

χ → χ ′ = GχG−1, X → X′ = GXG−1.
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To conclude, the centralizer C of the isometries related to t and φ induces linear transformations
of the dynamical variables.

In terms of 2 by 2 blocks a matrix G from the centralizer can be represented as follows:

G =

⎛⎜⎜⎝
g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

⎞⎟⎟⎠. (1.128)

Here g1, . . . , g4 denote four independent copies of SU(2). Analogously, the elements X and
χ can be represented as

X =

⎛⎜⎜⎝
0 Z 0 0
Z† 0 0 0
0 0 0 iY
0 0 iY † 0

⎞⎟⎟⎠, χ =

⎛⎜⎜⎜⎝
0 0 �1 �2

0 0 �
†
3 �4

−�†
1 �3 0 0

−�†
2 �

†
4 0 0

⎞⎟⎟⎟⎠. (1.129)

Here Z and Y are two 2 × 2 matrices which incorporate eight bosonic degrees of freedom

Z = 1

2

(
z3 − iz4 −z1 + iz2

z1 + iz2 z3 + iz4

)
, Y = 1

2

(
y3 − iy4 −y1 + iy2

y1 + iy2 y3 + iy4

)
, (1.130)

while four 2 × 2 blocks �1, . . . , �4 comprise 16 complex fermions. Matrices Z and Y satisfy
the following reality condition:

Z† = εZtε−1, Y † = εY tε−1, ε ≡ iσ2, (1.131)

where σ2 is the Pauli matrix.
Thus, we deduce that under the action of G

X → GXG−1 =

⎛⎜⎜⎜⎝
0 g1Zg

−1
2 0 0

g2Z
†g−1

1 0 0 0
0 0 0 ig3Yg

−1
4

0 0 ig4Y
†g−1

3 0

⎞⎟⎟⎟⎠ (1.132)

and

χ → GχG−1 =

⎛⎜⎜⎜⎜⎝
0 0 g1�1g

−1
3 g1�2g

−1
4

0 0 g2�
†
3g

−1
3 g2�4g

−1
4

−g3�
†
1g

−1
1 g3�3g

−1
2 0 0

−g4�
†
2g

−1
1 g4�

†
4g

−1
2 0 0

⎞⎟⎟⎟⎟⎠. (1.133)

Before we proceed with discussing these symmetry transformations, let us note that, according
to equation (1.87), one can implement the κ-symmetry gauge by requiring the absence of
fermionic blocks�1,�

†
1 and�4,�

†
4. As we now see, under the action of C the block structure

(1.129) is preserved and, therefore, it is indeed consistent to put �1,�
†
1 and �4,�

†
4 to zero.

In what follows we will assume this gauge choice for the odd part of the coset representative.
Now we will introduce a convenient two-index notation which allows us to naturally treat

the dynamical variables of the model as transforming in bi-fundamental representations of
su(2). To this end, we recall that any SU(2)-matrix g obeys the following property:

g† = g−1 = εgt ε−1 �⇒ g∗ = εgε−1, (1.134)

which provides an equivalence between an irrep of SU(2) and its complex conjugate.
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Consider, e.g., matrix Z and multiply it by ε from the right. According to equation (1.132),
Zε transforms under C as follows:

Zε → g1Zg
−1
2 ε = g1Zεg

t
2. (1.135)

If we now associate the index α = 3, 4 to the fundamental irrep of g1 and the index α̇ = 3̇, 4̇
to the fundamental irrep of g2 , then Zε can be regarded as the matrix with entries Zαα̇

Zε =
(
Z33̇ Z34̇

Z43̇ Z44̇

)
. (1.136)

Then formula (1.135) written in components takes the form

Z′αα̇ = gαβg
α̇
β̇
Zββ̇ ,

which shows that Zε transforms in the bi-fundamental representation of su(2). The matrix Z
itself is expressed via the entries of Zε as

Z =
(
Z34̇ −Z33̇

Z44̇ −Z43̇

)
. (1.137)

Analogously, we associate the indices a = 1, 2 and ȧ = 1̇, 2̇ with the third and the fourth
copies of su(2) in equation (1.127), respectively. Then, parametrization (1.129) of the bosonic
Lie algebra element X in terms of the entries Zαα̇ and Y aȧ reads as follows:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 Z34̇ −Z33̇ 0 0 0 0
0 0 Z44̇ −Z43̇ 0 0 0 0

−Z43̇ Z33̇ 0 0 0 0 0 0
−Z44̇ Z34̇ 0 0 0 0 0 0

0 0 0 0 0 0 iY 12̇ −iY 11̇

0 0 0 0 0 0 iY 22̇ −iY 21̇

0 0 0 0 −iY 21̇ iY 11̇ 0 0
0 0 0 0 −iY 22̇ iY 12̇ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.138)

To obtain this formula, we have replaced the matrices Z† and Y † in equation (1.129) via Z
and Y by using the reality condition (1.131). In a similar fashion we deduce the following
parametrization of the fermionic Lie algebra element χ

χ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 η32̇ −η31̇

0 0 0 0 0 0 η42̇ −η41̇

0 0 0 0 θ
†
14̇

θ
†
24̇

0 0

0 0 0 0 −θ †
13̇

−θ †
23̇

0 0

0 0 θ14̇ −θ13̇ 0 0 0 0
0 0 θ24̇ −θ23̇ 0 0 0 0

−η†
32̇

−η†
42̇

0 0 0 0 0 0

η
†
31̇

η
†
41̇

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.139)

Here, by definition, θ †αȧ and η†aα̇ are understood as complex conjugate of θαȧ and ηaα̇ ,
respectively,

(θaα)∗ ≡ θ †aα, (ηαa)∗ ≡ η†αa. (1.140)
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In summary, we have shown that the bosonic symmetry algebra G which commutes with
an element�(t, φ) coincides with four copies of su(2). The corresponding group acts linearly
on the remaining dynamical variables. We choose to parametrize these dynamical variables
by fields

Zαα̇, Y aȧ, θaα̇, ηaα̇,

which transform in the bi-fundamental representation of su(2).

1.5. Appendix

1.5.1. Embedding coordinates. The bosonic coset element gb provides a parametrization
of the AdS5 × S5 space in terms of 5 + 5 unconstrained coordinates zi and yi . Sometimes it
is however more convenient to work with constrained 6 + 6 coordinates which describe the
embedding of the AdS5 and the 5-sphere into R4,2 and R6, respectively.

The embedding coordinates are defined in the following way. For the 5-sphere we
introduce six real coordinates YA,A = 1, . . . , 6 obeying the condition Y 2

A = 1. These
coordinates are related to five unconstrained variables φ, ya as follows:

Y1 ≡ Y1 + iY2 = y1 + iy2

1 + y2

4

, Y2 ≡ Y3 + iY4 = y3 + iy4

1 + y2

4

,

(1.141)

Y3 ≡ Y5 + iY6 = 1 − y2

4

1 + y2

4

exp(iφ).

Here we used the shorthand notation y2 = yiyi . The metric induced on S5 from the flat metric
of the embedding space is

dYA dYA =
(

1 − y2

4

1 + y2

4

)2

dφ2 +
dyi dyi(
1 + y2

4

)2 . (1.142)

Analogously, to describe the five-dimensional AdS space we introduce the embedding
coordinates ZA. These coordinates are constrained to obey ηABZAZB = −1 with the metric
ηAB = (−1, 1, 1, 1, 1,−1) and are related to t, za as

Z1 ≡ Z1 + iZ2 = z1 + iz2

1 − z2

4

, Z2 ≡ Z3 + iZ4 = z3 + iz4

1 − z2

4

,

(1.143)

Z3 ≡ Z0 + iZ5 = 1 + z2

4

1 − z2

4

exp( it),

where z2 = zizi . For the induced metric one obtains

ηAB dZA dZB = −
(

1 + z2

4

1 − z2

4

)2

dt2 +
dzi dzi(
1 − z2

4

)2 . (1.144)

In the last formula we assume −∞ < t <∞, which corresponds to considering the universal
cover of the AdS space without closed time-like curves. In what follows we do not distinguish
between the lower and upper indices for the z- and y-coordinates, that is zi ≡ zi, yi ≡ yi . For
future convenience we combine the coordinates zi, yi into a single vector xμ withμ = 1, . . . , 8
for which xi = zi, xi+4 = yi .

Thus, the metric of the AdS5 × S5 space takes the following diagonal form:

ds2 = −Gtt dt2 +Gφφ dφ2 +Gzz dzi dzi +Gyy dyi dyi
= −Gtt dt2 +Gφφ dφ2 +Gμμ dxμdxμ, (1.145)
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where

Gtt =
(

1 + z2

4

1 − z2

4

)2

, Gφφ =
(

1 − y2

4

1 + y2

4

)2

, Gzz = 1(
1 − z2

4

)2 , Gyy = 1(
1 + y2

4

)2 ,
and Gii = Gzz,G4+i,4+i = Gyy for i = 1, . . . , 4.

Having introduced the embedding coordinates, we would like to ask whether there exists
a bosonic coset representative gb such that the bilinear form str

(
g

−1
b

dgb

)2
would coincide

with the metric (1.145). Introduce the following matrices:

gb = �(t, φ)g(X), g(X) =
(

11 + X

11 − X

) 1
2

, (1.146)

where X is the Lie algebra element (1.122). Substituting here the matrix representation for X,
we find the following result:

g(X) =

⎛⎜⎝
1√

1− z2
4

[
11 + 1

2z
iγ i
]

0

0 1√
1+ y

2

4

[
11 + i

2 y
iγ i
]
⎞⎟⎠. (1.147)

One can easily verify that16 g(X)†Hg(X) = H , i.e. gb belongs to the bosonic subgroup
of su(2, 2|4). It depends on t, φ and X, i.e. it comprises the coset degrees of freedom
corresponding to the AdS5 × S5 space. Thus, we can consider gb as another embedding of
the coset element into SU(2, 2)× SU(4), alternative to the exponential map (1.122). Finally,
computing the metric str(g−1

b
dgb)

2, we see that it reproduces (1.145).

1.5.2. Alternative form of the string Lagrangian. We start with an alternative description of
the bosonic coset element and further use it to construct another convenient representation of
the string Lagrangian (1.35).

Let g be an arbitrary matrix from SU(2, 2)× SU(4). Construct the following matrix:

G = gKgt . (1.148)

Obviously, G is skew-symmetric: Gt = −G. It is also pseudo-unitary: G†H G = H . Let
h ∈ SO(4, 1) × SO(5). Then h leaves the matrix K invariant: hKht = K. Therefore, under
the right multiplication g → gh the matrix G remains unchanged

gKgt → ghKhtgt = G.

Thus, G depends solely on the coset degrees of freedom comprising the AdS5 ×S5 space. This
space itself can be thought of as an intersection of (even) pseudo-unitary and skew-symmetric
matrices.

Computing now G corresponding to the bosonic element g = �(t, φ)g(X) with g(X)

given by equation (1.147), we find

G = � 11 + X

11 − X
K� =

[
�2 11 + X2

11 − X2 − 2
X

11 − X2

]
K, (1.149)

where we have used the property X� = �−1X. We see that, opposite to g, the element G
depends on�2 rather than on�. Thus, G is a periodic function of σ irrespective of a winding

16 The map X → 11+X

11−X
is the Cayley transform which maps a (pseudo-) anti-Hermitian matrix into a (pseudo-) unitary

one. In equation (1.146) one can replace the square root by any real function f (x) which admits a power series
expansion around x = 0. Also, note that g−1(X) = g(−X).
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sector. Another way to see this is to write G in terms of global embedding coordinates.
Representing

G =
(

Gads 0
0 Gsphere

)
, (1.150)

we obtain

Gads =

⎛⎜⎜⎝
0 −Z3 Z∗

1 Z∗
2

Z3 0 −Z2 Z1

−Z∗
1 Z2 0 −Z∗

3

−Z∗
2 −Z1 Z∗

3 0

⎞⎟⎟⎠, Gsphere =

⎛⎜⎜⎝
0 −Y3 −iY∗

1 −iY∗
2

Y3 0 iY2 −iY1

iY∗
1 −iY2 0 −Y∗

3

iY∗
2 iY1 Y∗

3 0

⎞⎟⎟⎠,
where the entries above are written in terms of complex embedding coordinates given by
equations (1.141) and (1.143).

We point out that the actual convenience of the embedding coordinates is explained by
the fact that, in opposite to xμ, under the action of the whole bosonic symmetry group they
transform linearly. Indeed, if G ∈ SU(2, 2)× SU(4), then

G · g = g′hc �⇒ G → G′ = G · G ·Gt,
because the compensating element h from SO(5, 1) × SO(5) decouples from G′ as a
consequence of definition (1.148).

String Lagrangian. Starting with the coset parametrization (1.119), we write down the
corresponding 1-form A

A = −g−1 dg = −g
−1
b

(
g

−1
f

dgf

)
gb − g

−1
b

dg
−1
b
. (1.151)

The element g
−1
f

dgf takes values in su(2, 2|4) and it is the sum of even and odd components
denoted by B and F, respectively,

g
−1
f

dgf = B + F.

Hence, A = Ae + Ao, where the even, Ae, and odd, Ao, components are

Ae = −g
−1
b

Bgb − g
−1
b

dg
−1
b
, Ao = −g

−1
b

Fgb. (1.152)

It is interesting to note that with this choice of the coset parametrization the even component
of the flat current is a gauge transformation of the even element B, while the odd one is the
adjoint transform of F with the bosonic matrix gb.

As the next step, we compute the Z4-projections A(k) of the connection (1.152).
Straightforward application of formulae (1.24) together with the definition (1.148) gives

2A(0) = Ae − KAteK−1 = −2g
−1
b

dg − g
−1
b
(B − G Bt G − d G G−1)gb,

(1.153)
2A(2) = Ae + KAteK−1 = −g

−1
b
(B + G Bt G + d G G−1)gb,

for the even components of A, and

2A(1) = Ao + iKAst
o K−1 = −g

−1
b
(F + i G Fst G−1)gb,

(1.154)
2A(3) = Ao − iKAst

o K−1 = −g
−1
b
(F − i G Fst G−1)gb,

for the odd ones. Substituting these projections into the Lagrangian density (1.35), we obtain

L = −g
8

str
[
γ αβ(Bα + G Bα G−1 + ∂α G G−1)(Bβ + G Bβ G−1 + ∂β G G−1)

− 2iκεαβ Fα G Fst
β G−1
]
. (1.155)

37



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

The nice feature of this Lagrangian is that it only involves the fields which carry the linear
representation of the bosonic symmetry algebra.

Finally, the form (1.155) provides a shortcut to reproduce the Polyakov Lagrangian for
strings on AdS5 × S5, when fermions are switched off. Indeed, putting fermions to zero
reduces expression (1.155) to

L = −g
8
γ αβ str(∂α G G−1∂β G G−1), (1.156)

which is the Lagrangian density for a nonlinear sigma-model with bosonic fields taking value
in the AdS5 × S5 space described by a group element G.

1.6. Bibliographic remarks

A manifestly supersymmetric covariant flat space superstring action has been found in [53]
based on the covariant action for superparticles [54]. This action exhibits κ-symmetry [53]
which generalizes the local fermionic symmetries first discovered for massive and massless
superparticles [55, 56]. For an introduction to the Green–Schwarz formalism and further
references on the covariant quantization issue we refer the reader to the book [9]. Interpretation
of the Green–Schwarz string as a coset sigma-model of the Wess–Zumino type has been
proposed by Henneaux and Mezincescu [57]. It was shown in [58] that type IIB superstring can
be consistently coupled to a generic supergravity background with preservation of κ-symmetry
gauge invariance, see also an earlier work [59] on the same subject for the ten-dimensional
superstring with N = 1 target-space supersymmetry.

The action for type IIB superstring on AdS5 × S5 was constructed by Metsaev and
Tseytlin [12] along the lines of the Henneaux–Mezincescu approach [57]. Various aspects of
this action, alternative formulations and related models have been discussed in [60–62]. In
[63] it was found that the Wess–Zumino term entering the sigma model action is d-exact and
can be written in the local fashion provided the subgroup H defining the coset space G/H
is the invariant locus of a Z4-automorphism of G. Our exposition of the string sigma model
based on the coset space (1.1) follows closely [64].

There is a vast literature on Lie superalgebras. The reader is invited to consult [65–67].
Automorphisms of simple Lie superalgebras have been classified in [68] and we mention the
corresponding classification for sl(4|4) in section 1.1.2.

Our treatment of κ-symmetry in section 1.2.3 is based on the observation that this
symmetry can be understood as the right local action on the coset space supplied with the
proper transformation of the two-dimensional world-sheet metric [69]. The reader might also
find some similarities with the corresponding discussion in [62].

Concerning the general concept of integrability and conservation laws, we refer the reader
to the books [70, 71]. Dynamics of bosonic strings propagating in the AdS5 × S5 geometry is
described by the corresponding nonlinear sigma model. This model inherits its classical and
quantum integrability from the principal chiral model based on the group SO(4, 2)× SO(6).
Classically the model is conformally invariant but at the quantum level it develops a mass gap.

Integrability of classical superstring theory on AdS5 ×S5 has been established for the first
time in [8] by exhibiting the zero-curvature representation of the string equations of motion.
The corresponding (full and bosonic) Lax pair and the associated conservation laws have been
further studied in many papers, see, e.g. [64, 72–78]. The relation between κ-symmetry and
integrability was emphasized in [8, 79].

Coset parametrization of the type g = gfgb has been introduced in [80]. Also, the action
of the global symmetry algebra on a coset representative was analyzed there. Representation
(1.123), suitable for the light-cone gauge fixing, appeared in [14]. The κ-symmetry gauge
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choice (1.87) was pointed out in [14, 80]. Two-index notation to encode the transformation
properties of the world-sheet fields with respect to the linearly realized bosonic subgroup
SU(2)4 was introduced in [81]. For the alternative parametrization of the coset space discussed
in appendix 2 we refer to works [80] and [82]. The latter paper also contains the alternative
form of the string Lagrangian—equation (1.155).

2. Strings in the light-cone gauge

To fix the reparametrization freedom of the string sigma model, in this section we introduce a
special one-parameter class of gauges. They are usually called the uniform light-cone gauges.
In the light-cone gauge the string sigma model is a two-dimensional field theory defined on a
cylinder of circumference P+ with the light-cone Hamiltonian depending on the string tension
g and P+. It describes a sector of string states, all carrying the same spacetime light-cone
momentum P+. Not all of these states are considered to be physical—a physical state should
satisfy the level-matching condition that is its total world-sheet momentum must vanish.

Quantization of the light-cone string sigma model simplifies greatly in the so-called
decompactification limit where the light-cone momentum tends to infinity, while the string
tension is kept fixed. In the decompactification limit the gauge-fixed model is defined on
the plane and has massive excitations. Giving up the level-matching condition defines the
theory off-shell. In the off-shell theory world-sheet excitations (particles) carry non-trivial
world-sheet momenta and can scatter among themselves. Their pairwise scattering is encoded
into the two-body world-sheet S-matrix.

In this section the light-cone model is quantized perturbatively in the large string tension
expansion. At the leading order the model is nothing else but a massive relativistic two-
dimensional theory with eight bosons and eight fermions. Developing the expansion in
powers of 1/g, one can compute the corresponding perturbative world-sheet S-matrix. We
present here the corresponding calculation in the tree-level (Born) approximation. We also
study the symmetry algebra of the light-cone model and show that in the off-shell theory it
undergoes a central extension; the latter turns out to be crucial for fixing the matrix structure
of the exact world-sheet S-matrix.

2.1. Light-cone gauge

In this section we introduce the first-order formalism for the Green–Schwarz superstring
in AdS5 × S5. Then we impose the uniform light-cone gauge and fix κ-symmetry. The
uniform light-cone gauge generalizes the standard phase-space light-cone gauge to a curved
background, and it is distinguished from other possible light-cone gauges by the choice of the
light-cone coordinates and κ-symmetry fixing. To make the discussion clearer, we start by
considering bosonic strings, and then include fermions and fix κ-symmetry.

2.1.1. Bosonic strings in light-cone gauge. We consider strings propagating in a target
manifold possessing (at least) two Abelian isometries realized by shifts of the time coordinate
of the manifold denoted by t, and a space coordinate denoted by φ. If the variable φ is an
angle then the range of φ is chosen to be from 0 to 2π .

To impose a uniform gauge, we also assume that the string sigma-model action is invariant
under shifts of t and φ, all the other bosonic and fermionic fields being invariant under the
shifts. This means that the string action does not have an explicit dependence on t and φ and
depends only on the derivatives of the fields. An example of such a string action is provided
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by the Green–Schwarz superstring in AdS5 × S5 where the metric can be written in the form,
see (1.145)

ds2 = −Gtt dt2 +Gφφ dφ2 +Gμν dxμ dxν. (2.1)

Here t is the global time coordinate of AdS5, φ is an angle parametrizing the equator of S5,
and xμ, μ = 1, . . . , 8, are the remaining ‘transversal’ coordinates of AdS5 × S5.

In this subsection we consider only the bosonic part of a string sigma model action, and
assume that the B-field vanishes.

The corresponding part of the string action is of the following form:

S = −g
2

∫ r
−r

dσ dτγ αβ∂αX
M∂βX

NGMN, (2.2)

where g is the effective dimensionless string tension, XM = {t, φ, xμ} are string coordinates
and GMN is the target-space metric independent of t and φ.

The simplest way to impose a uniform light-cone gauge is to introduce momenta
canonically conjugate to the coordinates XM

pM = δS

δẊM
= −gγ 0β∂βX

NGMN, ẊM ≡ ∂0X
M,

and rewrite the string action (2.2) in the first-order form

S =
∫ r

−r
dσ dτ

(
pMẊ

M +
γ 01

γ 00
C1 +

1

2gγ 00
C2

)
. (2.3)

The reparametrisation invariance of the string action leads to the two Virasoro constraints

C1 = pMX′M, C2 = GMNpMpN + g2X′MX′NGMN, X′M ≡ ∂1X
M,

which are to be solved after imposing a gauge condition.
The invariance of the string action under the shifts of the time and space coordinates, t

and φ, of the manifold leads to the existence of two conserved charges

E = −
∫ r

−r
dσpt , J =

∫ r
−r

dσpφ. (2.4)

It is clear that the charge E is the target-spacetime energy, and J is the U(1) charge of the
string equal to the total (angular) momentum of the string in the φ-direction.

To impose a uniform gauge we introduce the ‘light-cone’ coordinates and momenta

x− = φ − t, x+ = (1 − a)t + aφ, p− = pφ + pt , p+ = (1 − a)pφ − apt ,
t = x+ − ax−, φ = x+ + (1 − a)x−, pt = (1 − a)p− − p+, pφ = p+ + ap−.

Here a is an arbitrary number which parametrizes the most general uniform gauge (up to some
trivial rescaling of the light-cone coordinates) such that the light-cone momentum p− is equal
to pφ + pt . This choice of gauge is natural in the AdS/CFT context because, as we will see in
a moment, in such a uniform gauge the world-sheet Hamiltonian is equal to E − J .

Taking into account (2.4), we get the following expressions for the light-cone momenta:

P− =
∫ r

−r
dσp− = J − E, P+ =

∫ r
−r

dσp+ = (1 − a)J + aE.

In terms of the light-cone coordinates the action (2.3) takes the form

S =
∫ r

−r
dσ dτ

(
p−ẋ+ + p+ẋ− + pμẋ

μ +
γ 01

γ 00
C1 +

1

2gγ 00
C2

)
, (2.5)

where

C1 = p+x
′
− + p−x ′

+ + pμx
′μ. (2.6)
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The second Virasoro constraint is a quadratic polynomial in p− which can be cast in the
following form:

C2 = (a2G−1
φφ − (a − 1)2G−1

t t

)
p2

− + 2
(
aG−1

φφ − (a − 1)G−1
t t

)
p−p+ +

(
G−1
φφ −G−1

t t

)
p2

+

+ g2((a − 1)2Gφφ − a2Gtt )x
′2
− − 2g2((a − 1)Gφφ − aGtt )x ′

−x
′
+

+ g2(Gφφ −Gtt )x ′2
+ + Hx, (2.7)

where Hx is the part of the constraint which depends only on the transversal fields xμ and pμ

Hx = Gμνpμpν + g2x ′μx ′νGμν,

and we assume that the target spacetime metric is of -form (2.1).
We then fix the uniform light-cone gauge by imposing the conditions

x+ = τ + amσ, p+ = 1. (2.8)

The condition p+ = 1 means that the light-cone momentum is distributed uniformly along the
string, and this explains the word ‘uniform’ in the name of the gauge. The integer number m is
the winding number which represents the number of times the string winds around the circle
parametrized by φ. The winding number appears because we consider closed strings and the
coordinate φ is an angle variable with the range 0 � φ � 2π and, therefore, it has to satisfy
the constraint

φ(r)− φ(−r) = 2πm, m ∈ Z. (2.9)

The consistency of this gauge choice also fixes the constant r to be equal to

r = 1
2P+,

which means that the light-cone string sigma model is defined on a cylinder of circumference
equal to the total light-cone momentum P+.

To find the gauge-fixed action, we first solve the Virasoro constraint C1 for x ′
−

C1 = x ′
− + amp− + pμx

′μ = 0 �⇒ x ′
− = −amp− − pμx ′μ,

then we substitute the solution into C2 and solve the resulting quadratic equation for p−.
Substituting all these solutions into the string action (2.5) and omitting the total derivative ẋ(0)−
of the zero mode of x−, we end up with the gauge-fixed action

S =
∫ r

−r
dσ dτ(pμẋ

μ − H), (2.10)

where

H = −p−(pμ, xμ, x ′μ) (2.11)

is the density of the world-sheet Hamiltonian which depends only on the physical fields
pμ, x

μ. It is worth noting that H has no dependence on P+, and the dependence of the gauge-
fixed action and the world-sheet Hamiltonian H = ∫ r−r dσH on P+ comes only through the
integration bounds ±r .

Since we consider closed strings, the transversal fields xμ are periodic: xμ(r) = xμ(−r).
Therefore, the gauge-fixed action defines a two-dimensional model on a cylinder of
circumference 2r = P+. In addition, the physical states should also satisfy the level-matching
condition

�x− =
∫ r

−r
dσx ′

− = amH −
∫ r

−r
dσpμx

′μ = 2πm, (2.12)

that follows by integrating the Virasoro constraint C1 (2.6) over σ and taking into account that
φ is an angle variable.

41



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

The gauge-fixed action is obviously invariant under the shifts of the world-sheet coordinate
σ . This leads to the existence of the conserved charge

pws = −
∫ r

−r
dσpμx

′μ, (2.13)

which is just the total world-sheet momentum of the string. In what follows we will be mostly
interested in the zero-winding number case, m = 0 because only in this case the large tension
perturbative expansion is well defined. Then the level-matching condition simply states that
the total world-sheet momentum vanishes for physical configurations

�x− = pws = 0, m = 0. (2.14)

It is worth stressing that to quantize the light-cone string sigma model and to also identify
its symmetry algebra, one has to consider all states with periodic xμ and to impose the
level-matching condition singling out the physical subspace only at the very end. In a uniform
light-cone gauge one has a well-defined model on a cylinder. However, if a string configuration
does not satisfy the level-matching condition then its target spacetime image is an open string
with end points moving in unison so that �x− remains constant. Another peculiarity is
related to the fact that the gauge-fixed string sigma models are equivalent for different choices
of a uniform gauge, i.e. for different values of a, provided the level-matching condition is
satisfied. String configurations which violate the level-matching condition may depend on a.
This gauge-dependence makes the problem of quantizing string theory in a uniform gauge
very subtle. On the other hand, the requirement that physical states are gauge-independent
should impose severe constraints on the structure of the theory. It may also happen that for
finite J there is a preferred choice of the parameter a simplifying the exact quantization of the
model. In fact, we will see that for finite J the choice a = 0 seems to be the most natural one,
at least in the AdS/CFT context. For example, only in the a = 0 uniform gauge one can study
string configurations with an arbitrary winding number in one go.

Let us now consider in more detail bosonic strings in AdS5 × S5 where the metric takes
the form (1.145). We consider string states with zero-winding number m = 0 and impose the
uniform light-cone gauge (2.8) x+ = τ, p+ = 1. Solving the first Virasoro constraint C1 (2.6)
for x ′

−, we get

x ′
− = −pμx ′μ,

while the second constraint (2.7) takes the following form:

C2 = (a2G−1
φφ − (a − 1)2G−1

t t

)
p2

− + 2
(
aG−1

φφ − (a − 1)G−1
t t

)
p− +G−1

φφ −G−1
t t

+ g2((a − 1)2Gφφ − a2Gtt )x
′2
− + Hx. (2.15)

There are two solutions of the constraint equation C2 = 0, and one should keep those that
leads to a positive definite Hamiltonian density through the relation H = −p−. A simple
computation shows that the solution is given by the following expression:

H =
√
GφφGtt (1 + ((a − 1)2Gφφ − a2Gtt )Hx + g2((a − 1)2Gφφ − a2Gtt )2x

′2−)

(a − 1)2Gφφ − a2Gtt

+
(a − 1)Gφφ − aGtt
(a − 1)2Gφφ − a2Gtt

. (2.16)

The world-sheet light-cone Hamiltonian has a very complicated nonlinear dependence on the
physical coordinates and momenta, and it could hardly be used to perform a direct canonical
quantization of the model.
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The gauge-fixed action corresponding to the world-sheet Hamiltonian17 can be used to
analyze string theory in various limits. One well-known limit is the BMN limit in which one
takes g → ∞ and P+ → ∞, while keeping g/P+ fixed. In this case it is useful to rescale σ so
that the range of σ will be from −π to π . The gauge-fixed action then admits a well-defined
expansion in powers of 1/g (or equivalently 1/P+), with the leading part being just a quadratic
action for eight massive bosons (and eight fermions for the full model). The action can be
easily quantized perturbatively and subsequently used to compute 1/P+ corrections to the
energy of string states.

Another interesting limit is the decompactification limit where P+ → ∞ with g kept
fixed. In this limit the circumference 2r goes to infinity and we get a two-dimensional massive
model defined on a plane. Since the gauge-fixed theory is defined on a plane the asymptotic
states and S-matrix are well defined. An important observation is that in the limit the light-cone
string sigma model admits one- and multi-soliton solutions. The corresponding one-soliton
solutions were named giant magnons because they are dual to field theory spin chain magnons
and also because generically their size is of order of the radius of S5. Since for a giant magnon
�x− is not an integer multiple of 2π , such a soliton configuration does not describe a closed
string. We will discuss giant magnons in the following section in detail.

Let us also mention that the world-sheet Hamiltonian in the light-cone gauge is related to
the target spacetime energy E and the U(1) charge J as follows:

H =
∫ r

−r
dσH = E − J. (2.17)

According to the AdS/CFT correspondence, the spacetime energy E of a string state is
identified with the conformal dimension � of the dual CFT operator: E ≡ �. Since the
Hamiltonian H is a function of P+ = (1 − a)J + aE, for generic values of a relation (2.17)
gives us a non-trivial equation on the energy E. Computing the spectrum of H and solving
equation (2.17) would allow one to find conformal dimensions of dual CFT operators.

There are three natural choices of the parameter a. If a = 0 we have the temporal gauge
t = τ, P+ = J . In this gauge the world-sheet Hamiltonian depends on J only and therefore its
spectrum immediately determines the spacetime energy E. If a = 1

2 , we obtain the usual light-
cone gauge x+ = 1

2 (t + φ) = τ, P+ = 1
2 (E + J ). The light-cone gauge appears to drastically

simplify perturbative computations in the large tension limit, as we will demonstrate later in
this section. Finally, one can also set a = 1. In this case, the uniform gauge reduces to
x+ = φ = τ, P+ = E, where the angle variable φ is identified with the world-sheet time τ ,
and the energy E is distributed uniformly along the string. String theory in AdS5 × S5 has not
been analyzed in this gauge yet.

2.1.2. First-order formalism. To generalize the discussion of the previous subsection to the
Green–Schwarz superstring in AdS5 × S5, one should use the parametrization (1.123) of the
coset element that ensures that all fermions are neutral under the U(1) isometries generated by
shifts of t and φ. Then, to impose the light-cone gauge in the Hamiltonian setting, one should
first determine the momenta canonically conjugate to the coordinates t and φ (or, equivalently,
to the light-cone coordinates x±). Because of non-trivial interactions between bosonic and
fermionic fields, to find the momenta is not straightforward. A better way to proceed is to

17 The action is written in the first-order formalism. It is not difficult to see, however, that one can eliminate the
momenta from the action by using their equations of motion, and get an action which depends only on xμ and their
first derivatives.
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introduce a Lie-algebra valued auxiliary field π , and rewrite the superstring Lagrangian (1.35)
in the form

L = −str

(
πA

(2)
0 + κ

g

2
εαβA(1)α A

(3)
β +

γ 01

γ 00
πA

(2)
1 − 1

2gγ 00

(
π2 + g2

(
A
(2)
1

)2))
. (2.18)

It is easy to see that if one solves the equations of motion for π and substitutes the solution
back into (2.18) one obtains (1.35). The last two terms in (2.18) yield the Virasoro constraints

C1 = strπA(2)1 = 0, (2.19)

C2 = str
(
π2 + g2

(
A
(2)
1

)2) = 0, (2.20)

which are to be solved after imposing the light-cone gauge and fixing the κ-symmetry.
It is clear that without loss of generality we can assume that π belongs to the subspace

M(2) of su(2, 2|4), as the other components in the Z4 grading decouple. It therefore admits
the following decomposition:

π = π(2) = i

2
π+�+ +

i

4
π−�− +

1

2
πμ�μ + π1l i118. (2.21)

where �’s are 8 × 8 matrices defined as follows:

�+ =
(
� 0
0 �

)
, �− =

(−� 0
0 �

)
, �k =

(
γk 0
0 0

)
, �4+k =

(
0 0
0 iγk

)
.

(2.22)

Since A(2)α belongs to the superalgebra su(2, 2|4), strA(2)α = 0, and the quantity π1l does not
contribute to the Lagrangian.

It is worth stressing that the fields π± do not coincide with the momenta p± canonically
conjugate to x∓ but they can be expressed in terms of p±. Before doing this, we impose the
κ-symmetry gauge, which will dramatically simplify our further treatment.

2.1.3. Kappa-symmetry gauge fixing. As was discussed in the previous section, the key
property of the Green–Schwarz action is its invariance under the fermionic κ-symmetry that
halves the number of fermionic degrees of freedom. A κ-symmetry gauge should be compatible
with the bosonic gauge imposed, and the analysis of the κ-symmetry transformations (1.72)
for the Green–Schwarz superstring action (2.18) performed in subsection 1.2.3 revealed that
for the uniform light-cone gauge the κ-symmetry could be fixed by choosing the fermion field
χ (1.118) to be of the form (1.139). It is not difficult to check that the gauge-fixed fermion
field χ satisfies the following important relations:

�+χ = −χ�+, �−χ = χ�−. (2.23)

In fact these relations may be considered as the defining ones for the κ-symmetry gauge we
have chosen and can be used instead of specifying the explicit form of χ . Taking into account
that g−1(χ) = g(−χ) and these identities, one can then easily show that

g−1(χ)�+ = �+g(χ) ⇒ g−1(χ)�+g(χ) = �+g(χ)
2,

g−1(χ)�− = �−g−1(χ) ⇒ g−1(χ)�−g(χ) = �−.

The perturbative expansion of the light-cone Lagrangian in powers of the fields simplifies if
one uses g(x) ≡ g(X) of the form (1.146), and the matrix g(χ) of the form

g(χ) = χ +
√

1 + χ2. (2.24)

The standard exponential parametrization (1.118) can be obtained from (2.24) by means of
the following fermion redefinition χ → sinhχ .
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Now it is straightforward to use the coset parametrization (1.123) to compute the current
(1.33)

A = Aeven + Aodd,

where

Aeven = −g−1(x)

[
i

2

(
dx+ +

(
1

2
− a
)

dx−

)
�+(1 + 2χ2) +

i

4
dx−�−

]
g(x)

− g−1(x)
[√

1 + χ2 d
√

1 + χ2 − χdχ + dg(x)g−1(x)
]
g(x), (2.25)

Aodd = −g−1(x)

[
i

(
dx+ +

(
1

2
− a
)

dx−

)
�+χ
√

1 + χ2

+
√

1 + χ2 dχ − χd
√

1 + χ2

]
g(x). (2.26)

These formulae clearly demonstrate that the currents acquire the simplest form if the parameter
a of the uniform light-cone gauge is equal to 1/2. For a = 1/2 the odd part of the current A
does not depend on the light-cone coordinate x−! This explains the drastic simplifications that
occur for the a = 1/2 gauge in comparison to the general uniform gauge. For a = 1/2 and
in the gauge x+ = τ the odd part of A depends on the derivatives of the fermion χ only. In
what follows we restrict our discussion of the fermionic part of the light-cone Green–Schwarz
action to the simplest case a = 1/2.

2.1.4. Light-cone gauge fixing. Now we can use the formulae established above to expressπ±
in terms of p±. To this end, omitting the Virasoro constraints, we can rewrite the Lagrangian
(2.18) as follows:

L = p+ẋ− + p−ẋ+ − str

(
πA⊥

even + κ
g

2
εαβA(1)α A

(3)
β

)
, (2.27)

where

A⊥
even = −g−1(x)

[√
1 + χ2∂τ

√
1 + χ2 − χ∂τχ + ∂τg(x)g

−1(x)
]
g(x),

and the momentum p+, canonically conjugate to x−, is shown to be equal to

p+ = i

4
str(π�−g(x)2) = G+π+ − 1

2
G−π−, G± = 1

2

(
G

1
2
t t ±G

1
2
φφ

)
. (2.28)

The variable p− is not equal to the momentum p− canonically conjugate to x+. It differs from
p− by a contribution coming from the Wess–Zumino term in (2.27) , and is defined as follows:

p− = i

2
str
(
π�+g(x)(1 + 2χ2)g(x)

)
. (2.29)

Now having identified the light-cone momentum p+, we can impose the uniform light-cone
gauge (2.8) with a = 1/2

x+ = τ + 1
2mσ, p+ = 1. (2.30)

Let us stress again that the density H of the world-sheet light-cone Hamiltonian is equal to
−p− but not to −p−.

It is also important to recall that to impose the light-cone gauge we had to make all the
fermions of the string sigma model neutral with respect to the two U(1) isometry groups
generated by the shifts of t and φ. As a result, in the light-cone gauge the fermions are periodic
in the even winding sector and they are anti-periodic in the odd winding sector.

In what follows we will be interested in the decompactification and large string tension
limits, and, therefore, we set m = 0.
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2.1.5. Gauge-fixed Lagrangian. Now we are ready to find the light-cone gauge-fixed
Lagrangian. This is a multi-step procedure. First, we solve equation (2.28) determining
p+ for π+ = π+(p+, π−) and set p+ = 1 in the solution. Second, we solve the Virasoro
constraint C1 of equation (2.19) to find x ′

−. Finally, we determine π− from the second
Virasoro constraint C2 equation (2.7). Substituting all the solutions into the Lagrangian of
equation (2.27), we end up with the total gauge-fixed Lagrangian. The explicit derivation is
rather involved and we refer the reader to the original literature for details, see section 2.6.

The upshot is a Lagrangian which can be written in the standard form as the difference of
a kinetic term and the Hamiltonian density

Lgf = Lkin − H. (2.31)

The kinetic term Lkin depends on the time derivatives of the physical fields, and determines
the Poisson structure of the theory. It can be cast in the form

Lkin = pμẋμ − i

2
str(�+χ∂τχ) +

1

2
gνπμstr([�ν,�μ]Bτ )

− iκ
g

2

(
G2

+ −G2
−
)

str
(
FτKF st

σ K
)

+ iκ
g

2
GμGνstr

(
�νFτ�μKF st

σ K
)
, (2.32)

where we use the following definitions:

g(x) = g+I8 + g−ϒ + gμ�μ, g(x)2 = G+I8 +G−ϒ +Gμ�μ,

and the functions Bα and Fα refer to the even and odd components of g−1(χ)∂αg(χ)

g−1(χ)∂αg(χ) = Bα + Fα,

Bα = − 1
2χ∂αχ + 1

2∂αχχ + 1
2

√
1 + χ2∂α

√
1 + χ2 − 1

2∂α
√

1 + χ2
√

1 + χ2, (2.33)

Fα =
√

1 + χ2∂αχ − χ∂α
√

1 + χ2.

As one can see, the kinetic term is highly non-trivial and leads to a complicated Poisson
structure. To quantize the theory perturbatively, e.g. in the large string tension limit, one
would need to redefine the fields so that the kinetic term acquires the conventional form

Lkin → pμẋμ − i

2
str (�+χ∂τχ) , (2.34)

and, therefore, the redefined fields would satisfy the canonical commutation relations. This
will be done in the following section up to the quartic order in the fields.

The density H of the Hamiltonian is given by the sum of −p− and the Wess–Zumino term

H = −p− + HWZ, (2.35)

where

HWZ = −κ g
2

(
G2

+ −G2
−
)

str
(
�+χ
√

1 + χ2KF st
σ K
)

− κ g
2
GμGνstr

(
�+�νχ

√
1 + χ2�μKF st

σ K
)
.

Let us stress that, in this way, we find the gauge-fixed Lagrangian as an exact function of the
string tension g. The corresponding light-cone gauge-fixed action is written in the standard
form

Sgf =
∫ r

−r
dσ dτLgf , r = P+/2, (2.36)

and its dependence on the total light-cone momentum P+ comes only through the integration
bounds, as it was in the bosonic case discussed in the previous subsection. Then it is
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straightforward to take the decompactification limit and get a two-dimensional model on the
plane. This will be discussed in detail in the following section.

The gauge-fixed Lagrangian and Hamiltonian are obviously invariant under the
transformations generated by the SU(2)4 bosonic subgroup of the PSU(2,2|4) supergroup
discussed in subsection 1.4.2 because the subgroup commutes with the u(1)-isometries
corresponding to shifts of t and φ, and, therefore, preserves the light-cone and κ-symmetry
gauge-fixing conditions.

Finally, the physical states should satisfy the level-matching condition which is obtained
by integrating the Virasoro constraint C1 (2.19) over σ

�x− =
∫ r

−r
dσx ′

− = −
∫ r

−r
dσ

(
pμx

′
μ − i

2
str(�+χχ

′) +
1

2
gνπμstr([�ν,�μ]Bσ )

)
.

(2.37)

The right-hand side of the equation is equal to the world-sheet momentum carried by the string,
and, since we consider the zero-winding number sector, it must vanish for closed strings

�x− = pws = 0.

2.2. Decompactification limit

In this section we discuss properties of the light-cone string theory in the decompactification
limit where the total light-cone momentum P+ goes to infinity, and one gets a massive
two-dimensional model defined on the plane. The resulting model possesses multi-soliton
solutions, and we construct the simplest one-soliton solution and find its dispersion relation.
Then, we study the structure of the model in the large tension perturbative expansion, perform
its perturbative quantization, identify closed sectors, and construct a perturbative world-sheet
S-matrix which satisfies the classical Yang–Baxter equation.

2.2.1. From cylinder to plane. The light-cone string sigma model Hamiltonian constructed
in the previous section describes a highly nonlinear two-dimensional model defined on a
cylinder, and it is obviously too complicated to be quantized and solved exactly by using
canonical methods. A better way to address the spectral problem is to first consider the states
carrying very large light-cone momentumP+, and then to take into account the finiteP+ effects.

As was shown in the previous section, the light-cone string sigma model action is of the
following form:

S =
∫ r

−r
dσ dτL ,

where r = P+/2, and the Lagrangian density L depends on the string tension g, but it has no
dependence on the light-cone momentum P+. The light-cone model is defined on a cylinder,
and this is reflected in the periodic boundary conditions imposed on the bosonic and fermionic
fields entering the Lagrangian. A physical configuration corresponding to a closed string must
satisfy the level-matching condition which is equivalent to the vanishing of its world-sheet
momentum.

The specific dependence of the action on the light-cone momentumP+ allows one to define
the decompactification or infinite light-cone momentum limit. In this limit the circumference
of the cylinder tends to infinity, while the string tension is kept fixed, and one is left with a
non-trivial interacting model defined on the plane. The periodic boundary conditions turn into
the vanishing ones because one is interested in string states with finite world-sheet energy.
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Figure 2. Solitonic excitations of a closed string in the decompactification limit.

Since H = E − J is finite, and P+ = (1 − a)J + aE → ∞, the charge J also goes to infinity
in the decompactification limit.

The resulting model appears to be non-Lorentz-invariant but it has massive spectrum, and,
therefore, the notion of particles and their scattering matrix is well-defined. Moreover, this
model is expected to be integrable at the quantum level, and hence multi-body interactions
should factorize into a sequence of two-body events. Thus, in the decompactification limit the
problem of solving the theory reduces to three steps: first identify the asymptotic spectrum,
i.e. elementary excitations and their bound states, second find the dispersion relations for all
the particles and, finally, determine the two-body S-matrices. It is worth stressing, however,
that in order to be able to consider particles with arbitrary momenta, one should go off-shell,
i.e. to give up the level-matching condition and allow for unphysical configurations that do
not correspond to closed strings. As a result, some quantities, e.g. the world-sheet S-matrix,
acquire a mild gauge dependence.

At leading order in the large tension expansion the light-cone model describes eight
free bosons and eight free fermions of equal mass. The quadratic action, in fact, coincides
with the light-cone action for superstrings in the plane-wave background and, for this reason,
the large tension expansion is sometimes called the near plane wave one. This expansion
is rather peculiar because one can easily perform the perturbative quantization of the light-
cone model and perturbatively compute the world-sheet S-matrix that describes scattering of
massive bosons and fermions. In order to determine the exact S-matrix, one has to use more
sophisticated methods to be developed in section 3.

An interesting feature of the light-cone string sigma model in the decompactification
limit is that it admits (multi-)soliton solutions, see figure 2. Below we discuss the simplest
one-soliton solution called the giant magnon.

2.2.2. Giant magnon. To construct classical solutions of the light-cone string sigma model
it is sufficient to consider only its bosonic part. In general a solution may involve several
fields from both the AdS and S5 parts of the background geometry. Simplest solutions would
obviously depend only on one field, and one can show that a solution with a finite energy
which can therefore be called a soliton exists only if one takes a field from the 5-sphere.

The corresponding part of the gauge-fixed string action is obtained from the Hamiltonian
(2.16) by setting to zero all the fields but one, say y1, from the S5 part of the action. One can
easily check that it is a consistent reduction of the light-cone model. Then, it is convenient to
make the following change of variables:

z = y1

1 + y2
1

4

.
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In the conformal gauge the corresponding reduction of the string sigma model is to strings
moving in the R × S2 part of the AdS5 × S5 background. In terms of the angle coordinate φ
and z the metric of S2 takes the form

ds2
S2 = dz2

1 − z2
+ (1 − z2) dφ2.

The coordinate z is related to the angle θ as z = cos θ . The values z = ±1 correspond to the
north and south poles of the sphere, and at z = 0 the angle φ parametrizes the equator.

The light-cone Hamiltonian depends on the string tension, and it is convenient to rescale
the world-sheet coordinate σ as σ → gσ . Then, the light-cone action takes the following
form:

S = g
∫ ∞

−∞
dσ dτ (pzż− H) , (2.38)

where the density of the gauge-fixed Hamiltonian is a function of the coordinate z and its
canonically conjugate momentum pz, but it has no dependence on the string tension g.
Explicit expressions for the Hamiltonian and other quantities computed in this subsection can
be found in appendix 2.5.1 where we also present their forms for the three simplest cases
a = 0, 1/2, 1.

To find soliton solutions of the gauge-fixed string theory, it is convenient to go to the
Lagrangian description by eliminating the momentum pz. Solving the equation of motion for
pz that follows from the action (2.38), we determine the momentum as a function of ż and
z. Then substituting the solution into (2.38), we obtain the action in the Lagrangian form:
S = S(z, z′, ż). The explicit form of the action is given in appendix 2.5.1, and it is of the
Nambu–Goto form. We will see in a moment that this leads to the existence of finite-energy
singular solitons.

To find a one-soliton solution, we make the most general ansatz describing a wave
propagating along the string

z = z(σ − vτ), (2.39)

where v is the velocity of the soliton. Substituting the ansatz into the action (2.137) from
appendix 2.5.1 , we derive the Lagrangian, Lred = Lred(z, z

′), of a reduced model which
defines a one-particle system if we regard σ as a time variable. The σ -evolution of this
system can be easily determined by introducing the ‘momentum’ conjugate to z with respect
to ‘time’ σ

πz = ∂Lred

∂z′
,

and computing the reduced Hamiltonian

Hred = πzz′ − Lred.

The reduced Hamiltonian is a conserved quantity with respect to σ . Since the coordinate z of
the soliton satisfies vanishing boundary conditions, z(±∞) = z′(±∞) = 0, we conclude that

Hred = 0.

Solving this equation with respect to z′, we get the following basic equation:

z′2 =
(

1 − z2

1 − (1 − a)z2

)2
z2

1 − v2 − z2
, (2.40)

which can be easily integrated in terms of elementary functions.
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It is not difficult to see that a solution with finite energy exists if the following inequalities
hold:

0 � a � 1, 0 � |v| � 1. (2.41)

Then, assuming for definiteness that z � 0, the corresponding solution of equation (2.40) lies
between 0 and zmax = √

1 − v2. One can easily see from equation (2.40) that in the range of
parameters (2.41) the shape of the soliton is similar for any values of a and v. The allowed
values of z are 0 � z � zmax, and z′ vanishes at z = 0, and goes to infinity at z = zmax.

The corresponding solution is, as we see, not smooth at z = zmax. The energy of this
soliton is however finite. To compute the energy, we need to evaluate H/|z′| on the solution

H
|z′| = z√

z2
max − z2

.

Then the soliton energy is given by the following integral:

E − J = g
∫ ∞

−∞
dσH = 2g

∫ zmax

0
dz

H
|z′| = 2g

√
1 − v2. (2.42)

Finally, to find the dispersion relation we also need to compute the world-sheet momentum
(2.13)

pws = −
∫ ∞

−∞
dσpzz

′ = 2
∫ zmax

0
dz|pz|, (2.43)

where we have assumed that v > 0, and took into account that for the soliton we consider the
expression −pzz′ is positive. The following explicit formula for the momentumpz canonically
conjugate to z can be easily found by using equations (2.136), (2.39) and (2.40):

pz = vz

(1 − z2)
√
z2

max − z2
. (2.44)

Computing the world-sheet momentum

pws = 2 arccos v,

and expressing v in terms of pws, we derive the giant magnon dispersion relation

E − J = 2g
∣∣∣sin

pws

2

∣∣∣ . (2.45)

The dispersion relation explicitly shows that the light-cone model is not Lorentz-invariant. It
appears to be independent of the gauge parameter a. Note also the appearance of trigonometric
functions which are usually associated with a lattice structure, while here the dispersion relation
was obtained for a continuum model. The dispersion relation was derived in classical theory,
i.e. in the limit of large string tension g and finite world-sheet momentum pws. In the quantum
theory it gets modified, and we will discuss the exact dispersion relation in the following
section.

Let us finally mention that in the case of a one-soliton solution the world-sheet momentum
(2.43) is just equal to the canonical momentum carried by the center of mass of the soliton.
To see that we just need to plug the ansatz (2.39) into the string action (2.38), and integrate
over σ . Then we obtain the following action for a point particle:

S = g
∫

dτ (pwsv − H) ,

that explicitly shows that pws is the soliton momentum.
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2.2.3. Large string tension expansion. In this subsection we discuss the large string tension
expansion and perturbative quantization of the light-cone gauge-fixed action (2.36) in the
decompactification limit. To develop the expansion, we first note that the string tension g in
the gauge-fixed Lagrangian (2.31) is always accompanied by a σ -derivative of a field. Thus,
rescaling18 the coordinate σ as σ → gσ removes the g-dependence from the Lagrangian, and
the light-cone action takes the form

Sgf = g
∫

dσ dτLgf , (2.46)

where Lgf is given by (2.31) with g = 1. Finally, one rescales all the fields appearing in
(2.46) as follows:

xμ → xμ/
√
g, pμ → pμ/

√
g, χ → χ/

√
g, (2.47)

and expands the action (2.46) in powers of 1/g

Sgf =
∫

dσ dτ

(
L2 +

1

g
L4 +

1

g2
L6 + · · ·

)
, (2.48)

where L2 is quadratic in the fields, L4 is quartic, and so on.
It is worth mentioning that the rescaling (2.47) implies the following rescaling of the

world-sheet momentum of a state:

pws = −
∫

dσ(pμx
′
μ + · · ·) = 1

g
p,

where p is the rescaled world-sheet momentum given by the same formulap = − ∫ dσ(pμx ′
μ+

· · ·) in terms of the rescaled coordinates and momenta. It is kept fixed in the large tension
expansion and, therefore, one considers states with very small world-sheet momenta pws of
order 1/g.

In principle it is straightforward to expand the light-cone Lagrangian (2.31) and find the
quadratic and quartic Lagrangians. The quadratic Lagrangian appears to be of the following
simple form:

L2 = pμẋμ − i

2
str(�+χχ̇)− H2, (2.49)

where the first two terms with time derivatives define the standard Poisson structure for the
bosons and fermions, and H2 is the density of the quadratic Hamiltonian

H2 = 1

2
p2
μ +

1

2
x2
μ +

1

2
x ′2
μ − κ

2
str(�+χKχ ′stK) +

1

2
strχ2. (2.50)

The quadratic Lagrangian obviously describes a Lorentz-invariant theory of eight massive
bosons and eight massive fermions with masses equal to unity. It can be easily canonically
quantized as we describe in the following subsection.

The quartic Lagrangian obtained just by expanding (2.31), however, has two unpleasant
properties. First of all, it contains terms depending on the time derivatives of the fields which
come from the interacting part of the kinetic Lagrangian (2.32). These terms modify the
Poisson structure and make quantizing the model more complicated. One should remove
these terms by redefining the fields.

To find the necessary field redefinition, we note that the kinetic Lagrangian (2.32) can be
written in the following form:

Lkin = pμẋμ − i

2
str (�+χχ̇) +

i

g
str (�+ (p, x, χ)χ̇) , (2.51)

18 Performing the rescaling with finite P+ changes the integration bounds in (2.36) as r → P+/2g.
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where is a function of at least cubic order in physical fields. It is then clear that the last term
can be removed by the following redefinition of χ :

χ → χ +
1

g
 (p, x, χ). (2.52)

This redefinition casts the kinetic term (2.51) into the form (up to a total derivative)

Lkin = pμẋμ − i

2
str (�+χχ̇) +

i

g
str

(
�+

(
 (p, x, χ +

1

g
 )− (p, x, χ)

)
χ̇

)
+

i

2g2
str(�+ (p, x, χ) ̇(p, x, χ)). (2.53)

Since is at least of cubic order in the fields, the terms on the second line of (2.53) are at least
of sixth order. These terms can be also removed by a similar field redefinition. However, this
time one would need to redefine not only the fermions but also the bosonic coordinates xμ and
pμ. For our purposes here it is sufficient to perform only the simplest redefinition (2.52), and
just drop the terms on the second line of (2.53). This reduces the kinetic term to the canonical
quadratic form which enters the quadratic Lagrangian (2.49). Since the redefinition removes
all the time derivative terms from the quartic Lagrangian, the latter becomes equal up to the
minus sign to the quartic Hamiltonian: L4 = −H4.

It is also necessary to mention an important and nice property of the redefinition (2.52).
One can check that up to sixth order in fields, formula (2.37) for x ′

− takes the form

x ′
− = − 1

g

(
pμx

′
μ − i

2
str(�+χχ

′) + ∂σf (p, x, χ)
)
, (2.54)

where f (p, x, χ) is a function of the momenta and coordinates of at least fourth-order in the
fields. Thus, we see that integrating (2.54) over σ , we get the usual ‘flat space’ form of the
level-matching condition and world-sheet momentum

�x− =
∫ ∞

−∞
dσx ′

− = pws = p

g
= − 1

g

∫ ∞

−∞
dσ
(
pμx

′
μ − i

2
str(�+χχ

′)
)
. (2.55)

Let us stress again that even though for physical states the total world-sheet momentum must
vanish, to define asymptotic states and the scattering matrix we should consider states with
arbitrary world-sheet momenta.

The second unpleasant property of the quartic Lagrangian (and Hamiltonian) is that it
contains bosonic terms of the form p2x2 which do not depend on the space derivatives. These
terms, however, can be removed by a proper canonical transformation. The final form of the
quartic Hamiltonian is

H4 = 1

4

[
2(y ′2z2 − z′2y2 + z′2z2 − y ′2y2)

− str

(
1

2
χχ ′χχ ′ +

1

2
χ2χ ′2 +

1

4
[χ, χ ′]K[χ, χ ′]tK + χKχ ′stKχKχ ′stK

)
+ str

(
(z2 − y2)χ ′χ ′ +

1

2
x ′
μxν[�μ,�ν][χ, χ

′] − 2xμxν�μχ
′�νχ ′
)

+
iκ

4
xνpμstr([�ν,�μ][Kχ stK, χ ]′)

]
. (2.56)

The computation of the quartic Hamiltonian is rather involved, and we refer the reader to the
original literature for details. The quadratic and the quartic Hamiltonians can also be written
in terms of the bosonic and fermionic matrices X and χ , see (1.138) and (1.139), as follows:

H2 = 1

2
str(π⊥π⊥ + XX + X′X′ − κ�+χKχ ′stK + χχ), (2.57)
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H4 = 1

2
strϒXX strX′X′ +

1

4
strϒXX strχ ′χ ′

− str

(
1

2
[X,X′][χ, χ ′] + 2Xχ ′Xχ ′ − iκ

4
[X, π⊥][Kχ stK, χ ]′

)
− str

(
1

8
χχ ′χχ ′ +

1

8
χ2χ ′2 +

1

16
[χ, χ ′]K[χt , χ ′t ]K +

1

4
χKχ ′stKχKχ ′stK

)
,

(2.58)

whereϒ = diag(114,−114), and the momentum π⊥ = 1
2pμ�μ has the following form in terms

of two-index fields:

π⊥ = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −P43̇ −P44̇ 0 0 0 0
0 0 P33̇ P34̇ 0 0 0 0
P34̇ P44̇ 0 0 0 0 0 0

−P33̇ −P43̇ 0 0 0 0 0 0
0 0 0 0 0 0 − iP21̇ − iP22̇

0 0 0 0 0 0 iP11̇ iP12̇
0 0 0 0 iP12̇ iP22̇ 0 0
0 0 0 0 − iP11̇ − iP21̇ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.59)

The momenta Paȧ and Pαα̇ are canonically conjugate to Y aȧ and Zαα̇ , and π⊥ satisfies the
relation strπ⊥Ẋ = pμẋ

μ = PaȧẎ
aȧ + Pαα̇Żαα̇ . This form also makes the invariance of the

Hamiltonians under the transformations generated by the SU(2)4 subgroup of PSU(2,2|4)
manifest.

Summarizing the discussion in this subsection, we conclude that by means of proper field
redefinitions at each order of the large g expansion the light-cone gauge-fixed Lagrangian
(2.31) can be brought to the following canonical form:

Lgf = str
(
π⊥Ẋ − i

2
�+χχ̇
)

− H2 − 1

g
H4 − 1

g2
H6 − · · · , (2.60)

where the interaction part does not contain terms with the time derivatives, and also terms
which do not depend on the space derivatives. Perturbative quantization of the model can be
performed in the canonical way by using the quadratic part of the Lagrangian which describes
eight massive bosons and eight massive fermions. The quartic Hamiltonian can be then used
to compute the tree-level two-particle world-sheet scattering matrix.

2.2.4. Quantization. We now turn to the perturbative quantization of the light-cone AdS5×S5

superstring in the large tension expansion. We start with rewriting the quadratic Lagrangian
density in terms of the two-index fields, see equations (1.138), (1.139) and (2.59).

L2 = PaȧẎ aȧ + Pαα̇Ż
αα̇ + iη†αȧη̇

αȧ + iθ †aα̇ θ̇
aα̇ − H2, (2.61)

where the density of the quadratic Hamiltonian is given by

H2 = 1

4
PaȧP

aȧ + YaȧY
aȧ + Y ′

aȧY
′aȧ +

1

4
Pαα̇P

αα̇ + Zαα̇Z
αα̇ + Z′

αα̇Z
′αα̇

+ η†αȧη
αȧ +

κ

2
ηαȧη′

αȧ − κ

2
η†αȧη

′†
αȧ + θ †aα̇θ

aα̇ +
κ

2
θaα̇θ ′

aα̇ − κ

2
θ †aα̇θ

′†
aα̇. (2.62)

Here θ †aα̇ and η†αȧ are complex conjugate of θaα̇ and ηαȧ , respectively, and we lower and raise
the indices by using the ε-tensor

Yaȧ = εabεȧḃY bḃ, P aȧ = εabεȧḃPbḃ, ηαȧ = εαβεȧḃηβḃ, η†αȧ = εαβεȧḃη†
βḃ
,

(2.63)
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and similar formulae for Zαα̇, P αα̇, θaα̇, θ †aα̇ . The reality condition for these bosonic and
fermionic fields then takes the following form:

(Y aȧ)† = Yaȧ, (Paȧ)
† = P aȧ, (ηαȧ)

† = η†αȧ.
The canonical equal-time (anti)commutation relations for the fields can be now easily read off
from (2.61)

[Y aȧ(σ, τ ), Pbḃ(σ
′, τ )] = iδab δ

ȧ

ḃ
δ(σ − σ ′), [Zαα̇(σ, τ ), Pββ̇(σ

′, τ )] = iδαβδ
α̇
β̇
δ(σ − σ ′),{

θaα̇(σ, τ ), θ
†
bβ̇
(σ ′, τ )
} = δab δα̇β̇ δ(σ − σ ′),

{
ηαȧ(σ, τ ), η

†
βḃ
(σ ′, τ )
} = δαβδȧḃ δ(σ − σ ′),

and we just need to establish a mode decomposition of the bosonic and fermionic fields which
renders the quadratic Lagrangian (2.61) in a diagonal form.

We set κ = 1 for definiteness, and choose the following mode decompositions for the
bosonic fields:

Y aȧ(σ, τ ) = 1√
2π

∫
dp

1

2
√
ωp

(
eipσ aaȧ(p, τ ) + e−ipσ εabεȧḃa

†
bḃ
(p, τ )
)
,

Paȧ(σ, τ ) = 1√
2π

∫
dp i

√
ωp
(
e−ipσ a

†
aȧ(p, τ )− eipσ εabεȧḃa

bḃ(p, τ )
)
,

(2.64)
Zαα̇(σ, τ ) = 1√

2π

∫
dp

1

2
√
ωp

(
eipσ aαα̇(p, τ ) + e−ipσ εαβεα̇β̇a

†
ββ̇
(p, τ )
)
,

Pαα̇(σ, τ ) = 1√
2π

∫
dp i

√
ωp
(
e−ipσ a

†
αα̇(p, τ )− eipσ εαβεα̇β̇a

ββ̇ (p, τ )
)
,

and similarly for fermionic ones

θaα̇(σ, τ ) = e−iπ/4

√
2π

∫
dp√
ωp

(
eipσ fpa

aα̇(p, τ ) + e−ipσhpε
abεα̇β̇a

†
bβ̇
(p, τ )
)
,

(2.65)

ηαȧ(σ, τ ) = e−iπ/4

√
2π

∫
dp√
ωp

(
eipσ fpa

αȧ(p, τ ) + e−ipσhpε
αβεȧḃa

†
βḃ
(p, τ )
)
.

Here the creation a
†
MṀ

and annihilation aMṀ operators are conjugate to each other:

(aMṀ)† = a
†
MṀ

, where M = 1, . . . , 4 and Ṁ = 1̇, . . . , 4̇; the frequency is ωp =
√

1 + p2,
and the quantities

fp =
√
ωp + 1

2
, hp = p

2fp
, f 2

p − h2
p = 1, f 2

p + h2
p = ωp,

play the role of the fermion wavfunctions. In what follows we always use capital Latin letters
M,N, . . . and Ṁ, Ṅ, . . . to denote superindices M = (a|α), and Ṁ = (ȧ|α̇), where the
lower-case Latin indices are even and the Greek indices are odd. Thus, the grading of M, Ṁ
is defined to be εa = εȧ = 0 and εα = εα̇ = 1.

For the sake of simplicity, we will not explicitly show the time dependence in all the
operators everywhere where it cannot lead to any confusion. Then, omitting total derivative
terms, the quadratic Lagrangian indeed takes the diagonal form

L2 =
∫

dσL2 =
∫

dp
∑
M,Ṁ

(
ia†
MṀ
(p)ȧMṀ(p)− ωpa†MṀ(p)aMṀ(p)

)
,

which shows explicitly that the creation and annihilation operators satisfy the canonical equal-
time (anti-)commutation relations
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aMṀ(p, τ), a

†
NṄ
(p′, τ )
} = δMN δṀṄ δ(p − p′), (2.66)

where we take the commutator for bosons, and the anti-commutator for fermions.
The quadratic Hamiltonian is, therefore, of the standard harmonic oscillator form

H2 =
∫

dp
∑
M,Ṁ

ωpa
†
MṀ
(p)aMṀ(p), (2.67)

and its generic Q-particle state can now be created by acting with creation operators on the
vacuum

|�〉 = a†
M1Ṁ1

(p1)a
†
M2Ṁ2

(p2) · · · a†MQṀQ(pQ)|0〉, (2.68)

where we may assume that the momenta are ordered as follows:

p1 > p2 > · · · > pQ−1 > pQ.

The energy of this state is obviously equal to

H2|�〉 = E|�〉, E =
∑
i

ωpi .

This state is also an eigenvector of the world-sheet momentum operator which takes the
following form:

P ≡ pws = − 1

g

∫
dσ
(
PaȧY

′aȧ + Pαα̇Z
′αα̇ + iθ †αȧθ

′αȧ + iη†aα̇η
′aα̇)

= 1

g

∫
dp
∑
M,Ṁ

pa
†
MṀ
(p)aMṀ(p). (2.69)

A physical string state must also satisfy the level-matching condition implying that its world-
sheet momentum vanishes

P|�〉 = 0 ⇒
∑
i

pi = 0.

Nevertheless, to understand the general properties of the scattering matrix we would need to
consider states with arbitrary momenta.

The tree-level two-particle scattering matrix is determined by the quartic Hamiltonian
H4 that we take to be normal ordered with respect to these bosonic and fermionic oscillator
modes. Its expression in terms of the two-index fields is given in appendix 2.5.2.

2.2.5. Closed sectors. It is clear that there are 16 one-particle states of different flavors,
and, therefore, the two-particle scattering matrix is a (16 × 16) × (16 × 16) matrix. The
S-matrix is not diagonal, and in the scattering process particles can exchange their momenta
and flavors. The model is believed to be integrable, and the multi-particle scattering matrix
can be expressed through a product of the two-particle ones. There are, however, groups of
particles of definite flavors which can scatter only among themselves. They are said to form
closed sectors.

The simplest way to identify closed sectors is to use the fact that all the 16 particles are
charged under the bosonic su(2)⊕ su(2)⊕ su(2)⊕ su(2) subalgebra of the symmetry algebra
of the light-cone model, and the total charges carried by the scattering states are preserved in
the scattering process. Let us recall that two su(2)’s belong to su(4) ⊂ psu(2, 2|4), and act on
the undotted and dotted lower-case Latin indices a, b, ȧ, ḃ, . . . which take the values 1, 2 and
1̇, 2̇, and that the other two su(2)’s belong to su(2, 2) ⊂ psu(2, 2|4), and act on the undotted
and dotted Greek indices α, β, α̇, β̇, . . . which take the values 3, 4 and 3̇, 4̇. Thus, the bosonic
fields with all Latin indices come from the 5-sphere, and those with all Greek indices come
from the AdS part of the string sigma model. Below we describe some closed sectors.
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su(2) sector. The su(2) sector is a rank-one sector which consists of bosonic particles of
type a†

11̇
originating from the 5-sphere of AdS5 × S5, and a generic Q-particle state from the

sector is of the form

|�su(2)〉 = a†
11̇
(p1)a

†
11̇
(p2) · · · a†11̇

(pQ)|0〉. (2.70)

These states can obviously scatter only among themselves because they carry the maximum
charges Q/2,Q/2 with respect to su(2) ⊕ su(2) ⊂ su(4). The su(2) ⊕ su(2) algebra is
isomorphic to the so(4) that rotates the four coordinates yi from S5, see section 1.5.1 for
detail, and a a†

11̇
particle carries charge 1 with respect to the o(2) ∼ u(1) which rotates the

y1y2-plane, and charge 0 with respect to the o(2) ∼ u(1) which rotates the y3y4-plane.
Field theory operators dual to the states (2.70) with vanishing total world-sheet momentum

can be easily identified. To this end we assume that the light-cone momentum P+ = 1
2 (E + J )

is very large but not infinite. Recall that J is the charge associated with the U(1) generating
shifts of the angle φ of S5. Then, the charge J is also large, and it is assigned to the light-cone
vacuum and no creation and annihilation operator carries charges under this U(1). Thus, the
states (2.70) are the lightest states which only carry the two charges J and Q, and they should
be dual to the N = 4 SYM operators of the form

Osu(2) = tr(ZJXQ + permutations), (2.71)

where Z and X are the two complex gauge theory scalars which carry one unit of the charges J
and Q, respectively. Note that there is an su(2) algebra which rotates the two complex scalars
Z,X, and this explains why the sector is called the su(2) sector. It is clear that the particles
of type a†

22̇
form another closed su(2) sector.

sl(2) sector. The sl(2) sector is a rank-one sector consisting of bosonic particles of type a†
33̇

from the AdS part of AdS5 × S5, and a generic sl(2) sector Q-particle state is

|�sl(2)〉 = a†
33̇
(p1)a

†
33̇
(p2) · · · a†33̇

(pQ)|0〉. (2.72)

These states scatter only among themselves because they carry the maximum charges
Q/2,Q/2 with respect to su(2) ⊕ su(2) ⊂ su(2, 2). The su(2) ⊕ su(2) ∼ so(4) rotates
the four coordinates zi from AdS 5, and a a†

33̇
particle carries charges 1 and 0 with respect to

the two o(2) ∼ u(1)’s which rotate the z1z2- and z3z4-planes, respectively.
Thus, the states (2.72) are the lightest states which only carry the two charges J and Q,

and they are dual to the N = 4 SYM operators of the form

Osl(2) = tr(DQ−Z
J + permutations), (2.73)

where D− is the covariant derivative in a light-cone direction carrying unit charge under the
u(1) subalgebra of su(2, 2) that in the string picture corresponds to the o(2) which rotates the
z1z2-plane. The particles of type a†

44̇
obviously form another closed sl(2) sector.

su(1|1) sector. The su(1|1) sector is a rank-one sector consisting of fermionic particles of
type a†

31̇
, and a generic su(1|1) sector Q-particle state is

|�su(1|1)〉 = a†
31̇
(p1)a

†
31̇
(p2) · · · a†31̇

(pQ)|0〉. (2.74)

These states scatter only among themselves, and are dual to the N = 4 SYM operators of the
form

Osu(1|1) = tr(ZJ−Q

2 �Q + permutations). (2.75)

The fermion � is the highest weight component of the gaugino from the vector multiplet of
the gauge theory. The gaugino �α belongs to the vector multiplet, it is neutral under su(3)
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which rotates the three gauge theory complex scalars among themselves, and it carries the
same charge 1/2 under any of the three U(1) subgroups of SU(4). Note also that there is the
second equivalent su(1|1) sector consisting of fermionic particles of type a†

13̇
.

su(1|2) sector. The su(1|2) sector can be considered as the union of the su(2) and su(1|1)
sectors, because it consists of particles of types a†

11̇
and a†

31̇
, and a generic su(1|2) sector

Q-particle state is

|�su(1|2)〉 = a†
31̇
(p1)a

†
31̇
(p2) · · · a†31̇

(pM)a
†
11̇
(k1)a

†
11̇
(k2) · · · a†11̇

(kK)|0〉. (2.76)

Counting the charges carried by these states shows that they scatter only among themselves,
and the number of bosons and fermions is unchanged in the scattering process.

These states obviously are dual to the N = 4 SYM operators of the form

Osu(1|2) = tr(ZJ−M
2 �MXK + permutations), (2.77)

because, as was discussed above, the gauge theory fields X and � correspond to the creation
operators a†

11̇
and a†

31̇
, respectively.

su(2|3) sector. The su(2|3) sector is the largest closed sector, and it is an extension
of the su(1|2) sector. It involves two bosonic particles of types a†

11̇
and a†

21̇
, and two

fermionic particles of types a†
31̇

and a†
41̇

. A generic Q-particle state in the su(2|3) sector
is

a
†
31̇
(p1) · · · a†31̇

(pM+)a
†
41̇
(p̄1) · · · a†41̇

(p̄M−)a
†
11̇
(k1) · · · a†11̇

(kJ1)a
†
21̇
(k̄1) · · · a†21̇

(k̄J2)|0〉.
We see that the left su(2|2) subalgebra of the symmetry algebra su(2|2)⊕ su(2|2) acts on the
states of the sector.

The su(2|3) sector exhibits the following new feature. One can easily check that the
operators a†

11̇
a
†
21̇

and a†
31̇
a
†
41̇

have the same charges, and, therefore, the scattering of two bosons
can result into two fermions. Thus, the number of bosons and fermions is not preserved in the
scattering process involving particles from this sector.

These states can be shown to be dual to the N = 4 SYM operators of the form

Osu(2|3) = tr
(
ZJ−M+

2 −M−
2 XJ1Y J2�M+

+ �
M−
− + permutations

)
, (2.78)

where �+ is the highest weight component of the gaugino �α from the vector multiplet that
was denoted as � previously, and �− is the lowest weight component.

2.3. Perturbative world-sheet S-matrix

2.3.1. Generalities. In scattering theory the S-matrix is a unitary operator, which we denote
by S, mapping free particle out-states to free particle in-states in the Heisenberg picture. Both
in- and out-states belong to the same Hilbert space of the model, and are eigenvectors of the
full Hamiltonian H with the same eigenvalue E

H|p1, p2, . . . , pn〉(in/out)i1,...,in
= E|p1, p2, . . . , pn〉(in/out)i1,...,in

. (2.79)

Here i1, . . . , in are flavor indices used to account for different kinds of particles in the model,
and pk is the momentum carried by the particle with the flavor ik either at t = −∞ for in-states
or at t = ∞ for out-states. The eigenvalue E is given by

E =
n∑
k=1

ω(ik)pk , (2.80)
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where ω(i)p is the energy (the dispersion relation) of a particle of type i with the momentum p.

Recall that in relativistic theory the dispersion relation is of the form ωp =
√
m2 + p2, where

m is the mass of the particle which may depend on coupling constants of the model and may
receive quantum corrections; momentum p can take any real value. In a lattice discretization of

a relativistic model the dispersion relation appears in the form ωp =
√
m2 + 4

�2 sin2 p
2 , where �

is a lattice step and p changes from −π to π . As we will see in the following chapter, the exact
dispersion relation for particles of the light-cone string theory in the decompactification limit

is ωp =
√

1 + 4g2 sin2 p
2 where g is the string tension, and therefore the quantum light-cone

string sigma model can be regarded as a lattice model with the lattice step � = 1/g. In general,
in non-relativistic theory ωp can be an arbitrary function of p. It is worthwhile stressing that
the dispersion relations (2.80) entering in the eigenvalue problem (2.79) are exact, i.e. they
include all quantum corrections. In this subsection, to avoid discussing subtleties related to
ultra-violet divergences, we assume that we are dealing with a lattice model.

To describe the in- and out-states, we introduce creation and annihilation in- and out-
operators acting in the same Hilbert space and satisfying the canonical commutation relations
(2.66). The Hilbert space has a state |�〉, called vacuum, which is annihilated by all annihilation
operators ain(p, t)|�〉 = aout(p, t)|�〉 = 0. The in- and out-states corresponding to free
fields are obtained by applying creation in-operators ain†

k (p) ≡ a
in†
k (p, 0) and out-operators

a
out†
k (p) ≡ aout†

k (p, 0) to the vacuum state, respectively,

|p1, p2, . . . , pn〉(in)i1,...,in
= ain†

i1
(p1) · · · ain†

in
(pn)|�〉,

(2.81)
|p1, p2, . . . , pn〉(out)i1,...,in

= aout†
i1
(p1) · · · aout†

in
(pn)|�〉.

In the Heisenberg picture the time evolution of in- and out-operators is governed by the free
Hamiltonians Hin and Hout

Hin =
∫

dp
∑
i

ω(i)p a
in†
i (p)a

i
in(p),

(2.82)
Hout =

∫
dp
∑
i

ω(i)p a
out†
i (p)aiout(p).

By construction, in/out-states (2.81) are the eigenstates of H
in/out
0 with the same eigenvalue

(2.80).
The in- and out-operators satisfy the canonical commutation relations, and therefore, by

virtue of the Stone–von Neumann theorem, they are related by a unitary operator S

a†in(p, t) = S · a†out(p, t) · S†, ain(p, t) = S · aout(p, t) · S†, S|�〉 = |�〉, (2.83)

which is the S-matrix operator. The S-matrix is time independent because the in- and out-
operators have the same free field time dependence which factors out from equation (2.83).
Therefore, in and out states are related as follows:

|p1, . . . , pn〉(in)i1,...,in
= S · |p1, . . . , pn〉(out)i1,...,in

, (2.84)

and we can expand initial states on a basis of final states and vise versa. In particular, for the
two-particle in and out states we get either

|p1, p2〉(in)i,j = S · |p1, p2〉(out)i,j = Sklij (p1, p2)|p1, p2〉(out)k,l , (2.85)

or equivalently, by multiplying (2.85) by S and using (2.84)

S · |p1, p2〉(in)i,j = Sklij (p1, p2)|p1, p2〉(in)k,l . (2.86)
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Here we take into account that in one-dimensional space the set of momenta of the two
scattering particles does not change in the scattering process, and we also order the particle
momenta in decreasing order p1 > p2 > · · · > pn to take into account the particle’s statistics.
It is clear that the S-matrix commutes with the full Hamiltonian

S · H = H · S,

and that in the absence of interaction S = 11, and Sklij (p1, p2) = δki δlj . According to equations

(2.85) and (2.86), it does not matter whether one computes the matrix elements Sklij (p1, p2) by
using the basis of in or out states.

If there is no external field, and the particles interact only among themselves, then a
one-particle in-state coincides with its out-state, and therefore the S-matrix must also satisfy
the following condition:

S|p〉(in)k = |p〉(in)k ⇐⇒ S|p〉(out)
k = |p〉(out)

k . (2.87)

This condition can be used to determine dispersion relations.
To compute the S-matrix in perturbation theory one splits the full Hamiltonian into free

and interaction parts

H = H0 + V,

and introduces creation and annihilation operators a, a† satisfying the canonical commutation
relations (2.66). In terms of these operators the free Hamiltonian H0 takes the form

H0 =
∫

dp
∑
k

ω(k)p a
†
k(p, t)a

k(p, t). (2.88)

The operators a, a† (and H0) are interacting Heisenberg fields obeying the following equations
of motion:

ȧk(p, t) = i[H, ak(p, t)] = −iω(k)p a
k(p, t) + i[V, ak(p, t)], (2.89)

where V = V(a†, a) is a function of a†k and ak . Note that if the dispersion relation receives
quantum corrections then the interaction Hamiltonian V contains terms quadratic in a, a†.

Since the creation and annihilation operators a, a† satisfy the canonical commutation
relations, they are related to the in- and out-operators by unitary transformations

a†(p, t) = U†
in(t) · a†in(p, t) · Uin(t), a(p, t) = U†

in(t) · ain(p, t) · Uin(t), (2.90)

a†(p, t) = Uout(t) · a†out(p, t) · U
†
out(t), a(p, t) = Uout(t) · aout(p, t) · U

†
out(t). (2.91)

The unitary operators Uin,Uout are determined up to constant unitary transformations, which
we fix by imposing the following boundary conditions19:

Uin(−∞) = 11, Uout(∞) = 11, (2.92)

and up to multiplication by a phase U(t)→ eiϕ(t)U(t), where ϕ(t) is an arbitrary real function
independent of the creation and annihilation operators. In fact, the conditions (2.92) imply
that the interacting Heisenberg field a(p, t) tends to the free operators ain(p, t) and aout(p, t)

in the asymptotic past t → −∞ and the asymptotic future t → +∞, respectively.
Comparing formulae (2.90) and (2.91) with equations (2.83) defining the S-matrix, we

find the following expression for S in terms of Uin,Uout:

S = Uin(t) · Uout(t). (2.93)

19 It would be sufficient for our purposes to impose a weaker condition Uin(−∞) · Uout(∞) = 1l.
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The S-matrix is time independent and, therefore, in the above formula we can put t to any
desired value. Choosing t = ∞ or t = −∞ and taking into account the boundary conditions
(2.92), we get the following two convenient representation for the S-matrix:

S = Uin(∞) = Uout(−∞). (2.94)

To find Uin, we differentiate (2.90) with respect to t, and use the equations of motion for
the operators involved. After simple algebra, we get the following equalities:[

U̇inU
†
in + iV
(
a†in, ain
)
, a†in(p, t)

] = 0,
(2.95)[

U̇inU
†
in + iV
(
a†in, ain
)
, ain(p, t)

] = 0,

where the interaction Hamiltonian is now a function of the in-operators

V
(
a†in, ain
) = H
(
a†in, ain
)− Hin

0 = UinH
(
a
†
k, a

k
)
U†

in − Hin
0 .

Equations (2.95) imply that U̇inU
†
in + iV
(
a
†
in, ain
) = c(t)11, where c(t) does not depend on

a
†
in, ain. By properly choosing the phase ϕ(t), we can always ensure vanishing of c(t), so that

Uin will be then determined unambiguously by the following equation:

U̇inU
†
in + iV
(
a†in, ain
) = 0.

The equation can be solved in terms of the time-ordered exponential function T exp

Uin(t) = T exp

(
−i
∫ t

−∞
dτV
(
a†in(τ ), ain(τ )

))
, (2.96)

where we have taken into account the boundary condition (2.92) for Uin.
The operator Uout can be found in the same way. It satisfies the equation

U
†
outU̇out − iV

(
a
†
out, aout

) = 0,

whose solution is given by the following formula:

Uout(t) = T exp

(
−i
∫ ∞

t

dτV
(
a
†
out(τ ), aout(τ )

))
. (2.97)

Thus, we have derived the following two explicit expressions for the S-matrix:

S = T exp

(
−i
∫ ∞

−∞
dτV
(
a†in(τ ), ain(τ )

))
= T exp

(
−i
∫ ∞

−∞
dτV
(
a
†
out(τ ), aout(τ )

))
. (2.98)

Expanding the formula in powers of V, one develops the standard perturbation theory. We
will need only the leading term in the expansion

S = 11 + i
1

g
T, T = −g

∫ ∞

−∞
dτV(τ ) + · · · , (2.99)

where 1/g is an expansion parameter of the perturbation theory.
This formula allows one to compute the world-sheet two-particle S-matrix for the light-

cone string sigma model to the leading order in the 1/g expansion. To this end, one has to use
the quadratic Hamiltonian (2.67) and the quartic Hamiltonian (2.56) as the free and interaction
ones, respectively.

To complete our discussion of the general scattering theory, we note that in and out states
can be also constructed in terms of the oscillators a†(p) = a†(p, 0) and a(p) = a(p, 0).
Indeed, these oscillators are related to in and out operators through equations (2.90), (2.91)

a†(p) = U†
in(0) · a†in(p) · Uin(0), a(p) = U†

in(0) · ain(p) · Uin(0), (2.100)
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a†(p) = Uout(0) · a†out(p) · U
†
out(0), a(p) = Uout(0) · aout(p) · U

†
out(0). (2.101)

As a result, we can write in and out states as follows:

|p1, p2, . . . , pn〉(in)i1,...,in
= Uin(0) · a†i1(p1) · · · a†in (pn)|0〉 = Uin(0)| α〉,

|p1, p2, . . . , pn〉(out)i1,...,in
= U

†
out(0) · a†i1(p1) · · · a†in (pn)|0〉 = U

†
out(0)| α〉,

where |0〉 = U†
in(0)|�〉 = Uout(0)|�〉 is the state annihilated by all operators a(p):

ak(p)|0〉 = 0, and α is a multi-index including all momenta and flavors of the scattering
particles.

It is not difficult to find explicit formulae for the operators Uin(0) and Uout(0). To this
end we introduce free time-dependent operators which have the same time dependence as the
in and out operators

a
†
fr,k(p, t) = eiω(k)p t a

†
k(p), akfr(p, t) = e−iω(k)p t ak(p).

The new oscillators are obviously related to in and out operators through the same equations
(2.100), (2.101)

a
†
fr(p, t) = U†

in(0) · a†in(p, t) · Uin(0), afr(p, t) = U†
in(0) · ain(p, t) · Uin(0),

a
†
fr(p, t) = Uout(0) · a†out(p, t) · U

†
out(0), afr(p, t) = Uout(0) · aout(p, t) · U

†
out(0).

Thus, taking into account equations (2.96) and (2.97), we get the following formulae:

Uin(t) = Uin(0) · T exp

(
−i
∫ t

−∞
dτV
(
a
†
fr(τ ), afr(τ )

)) · U†
in(0), (2.102)

Uout(t) = U
†
out(0) · T exp

(
−i
∫ ∞

t

dτV
(
a
†
fr(τ ), afr(τ )

)) · Uout(0). (2.103)

From these expressions we can read off Uin(0) and Uout(0) in terms of the free oscillators
a
†
fr(τ ), afr(τ )

Uin(0) = T exp

(
− i
∫ 0

−∞
dτV
(
a
†
fr(τ ), afr(τ )

))
, (2.104)

Uout(0) = T exp

(
−i
∫ ∞

0
dτV
(
a
†
fr(τ ), afr(τ )

))
. (2.105)

Then we can easily find the overlap between in and out states, that is the S-matrix elements

β〈out |in〉α = 〈 β |Uout(0)Uin(0)| α〉 = 〈 β |Š| α〉,
where Š is the following operator:

Š = Uout(0)Uin(0) = T exp

(
−i
∫ ∞

−∞
dτV
(
a
†
fr(τ ), afr(τ )

))
,

Note that the operator Š differs from the S-matrix operator S in equation (2.93) by the opposite
order of Uin(0) and Uout(0).

It is not difficult to show that the operators Uin(0) and Uout(0) have the following
commutation relations with H and H0(0):

H · Uin(0) = Uin(0) · H0(0), H0(0) · Uout(0) = Uout(0) · H,

and, therefore, the operator H0(0) commutes with Š

H0(0) · Š = Š · H0(0).
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2.3.2. A sample computation of perturbative S-matrix. To illustrate how the formulae above
can be used, let us compute the perturbative S-matrix for the Y aȧ bosons from the 5-sphere.
The relevant part of the T-matrix operator is given by

TY = −g
∫ ∞

−∞
dτV(τ ) = 2

∫ ∞

−∞
dτ dσY aȧYaȧY

′bḃY ′
bḃ
, (2.106)

where we used equation (2.58) for the quartic Hamiltonian, and lowered the indices by means
of the ε-tensor Yaȧ = εabεȧḃY bḃ. We use the mode decomposition (2.64) with the creation and
annihilation operators having the free-field time dependence

aaȧ(p, t) = e−iωptaaȧ(p), a
†
aȧ(p, t) = eiωpta

†
aȧ(p).

The creation and annihilation operators are either in or out-operators depending on the basis
we use for the S-matrix computation.

Substituting the mode decomposition into (2.106), and integrating over τ and σ , one gets
a sum of terms of the form

δ(ω1 + ω2 + ω3 + ω4)δ(k1 + k2 + k3 + k4)a
†(k1)a

†(k2)a
†(k3)a

†(k4)

+ δ(ω1 + ω2 + ω3 − ω4)δ(k1 + k2 + k3 − k4)a
†(k1)a

†(k2)a
†(k3)a(k4)

+ δ(ω1 + ω2 − ω3 − ω4)δ(k1 + k2 − k3 − k4)a
†(k1)a

†(k2)a(k3)a(k4) + h.c.

One can easily check that due to the energy/momentum conservation delta-functions only the
terms with equal number of creation and annihilation operators do not vanish. Then, a simple
computation gives

TY =
∫

dk1 dk2 dk3 dk4

4
√
ω1ω2ω3ω4

δ(ω1 + ω2 − ω3 − ω4)δ(k1 + k2 − k3 − k4)

× [(2k2k4 − k1k2 − k3k4)a
†
bḃ
(k4)a

†
aȧ(k3)a

bḃ(k2)a
aȧ(k1)

+ (k1k2 + k3k4)a
†
aḃ
(k4)a

†
bȧ(k3)a

bḃ(k2)a
aȧ(k1)
]
.

The δ-functions can be used to integrate over k3 and k4 because they imply that either
k3 = k1, k4 = k2 or k3 = k2, k4 = k1, and taking into account that the Jacobian of
δ(ω1 + ω2 − ω3 − ω4) equals ω1ω2/|k1ω2 − k2ω1|, one gets the T-matrix

TY =
∫

dk1 dk2

2|k1ω2 − k2ω1|
[

1

2
(k1 − k2)

2a
†
bḃ
(k2)a

†
aȧ(k1)a

bḃ(k2)a
aȧ(k1)

+ 2k1k2a
†
aḃ
(k2)a

†
bȧ(k1)a

bḃ(k2)a
aȧ(k1)

]
.

Finally, acting by the T-matrix operator on a two-particle state, one derives

TY · ∣∣a†aȧ(p1)a
†
bḃ
(p2)
〉 = (p1 − p2)

2

2(p1ω2 − p2ω1)

∣∣a†aȧ(p1)a
†
bḃ
(p2)
〉

+
p1p2

p1ω2 − p2ω1

(∣∣a†bȧ(p1)a
†
aḃ
(p2)
〉
+
∣∣a†
aḃ
(p1)a

†
bȧ(p2)
〉)
, (2.107)

where we have assumed that p1 > p2.
The action of the T-matrix operator on an arbitrary two-particle state is given in

appendix 2.5.3.

2.3.3. S-matrix factorization. Formula (2.107) for the T-matrix shows that it has the following
factorized form:

TY = TY ⊗ 11 + 11 ⊗ ṪY ,
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where the operators TY and ṪY act only on the undotted and dotted indices, respectively.
Moreover, analyzing the formulae from appendix 2.5.3, one can show that the same
factorization also holds for the full T-matrix: T = T ⊗ 11 + 11 ⊗ Ṫ . This factorization in
fact follows from the corresponding factorization of the S-matrix operator:

S = S ⊗ Ṡ,
which is a consequence of the integrability of the model, as will be discussed in the following
section in detail.

The simplest way to describe the factorization is to think about the two-index creation
operators a†

MṀ
as a product of two one-index operators a†M and a†

Ṁ
, that is a†

MṀ
(p) ∼

a
†
M(p)a

†
Ṁ
(p). Since the lower-case Latin indices are even, and the Greek indices are odd, the

operators a†a, a
†
ȧ are bosonic, and a†α, a

†
α̇ are fermionic, and they commute or anti-commute

depending on their statistics.
We see, therefore, that one-particle states can be identified with the following tensor

product: ∣∣a†
MṀ
(p)
〉 ∼ ∣∣a†M(p)〉⊗ ∣∣a†Ṁ (p)〉,

and two-particle states with∣∣a†
MṀ
(p1)a

†
NṄ
(p2)
〉 ∼ (−1)εṀ εN

∣∣a†M(p1)a
†
N(p2)
〉⊗ ∣∣a†

Ṁ
(p1)a

†
Ṅ
(p2)
〉
, (2.108)

where the extra sign may appear because one permutes the operators a†
Ṁ

and a†N .

Then, S and Ṡ act in the space of the
∣∣a†M(p1)a

†
N(p2)
〉

and
∣∣a†
Ṁ
(p1)a

†
Ṅ
(p2)
〉

states,
respectively, and their S-matrix elements are defined in the usual way

S · ∣∣a†M(p1)a
†
N(p2)
〉 = SPQMN(p1, p2)

∣∣a†P (p1)a
†
Q(p2)
〉
, (2.109)

and a similar formula for Ṡ. In particular, we find from (2.107) the action of TY on the states

TY · ∣∣a†a(p1)a
†
b(p2)
〉 = (p1 − p2)

2

4(p1ω2 − p2ω1)

∣∣a†a(p1)a
†
b(p2)
〉
+

p1p2

p1ω2 − p2ω1

∣∣a†b(p1)a
†
a(p2)
〉
.

By using (2.108) and (2.109), one can easily derive the following relation between the elements
of the scattering matrix S, and those of the auxiliary S-matrices S and Ṡ:

S
P Ṗ ,QQ̇

MṀ,NṄ
(p1, p2) = (−1)εṀ εN+εṖ εQSPQMN(p1, p2)Ṡ Ṗ Q̇ṀṄ (p1, p2). (2.110)

Taking into account that

S = 11 + i
1

g
T, S = 11 + i

1

g
T , Ṡ = 11 + i

1

g
Ṫ ,

one finds the following relation:

T
P Ṗ ,QQ̇

MṀ,NṄ
= (−1)εṀ (εN+εQ)T PQMN δṖṀδ

Q̇

Ṅ
+ (−1)(εṀ+εṖ )εQδPMδ

Q
N Ṫ

Ṗ Q̇

ṀṄ
(2.111)

for the T-matrix elements. The matrix elements for T and Ṫ can be chosen to be equal to each
other, and can be extracted from the formulae in appendix 2.5.3. The result can be written in
the following form:

T cdab = Aδcaδdb + Bδda δ
c
b, T γ δab = Cεabεγ δ,

T γ δαβ = Dδγα δδβ + Eδδαδ
γ

β , T cdαβ = Fεαβεcd,
T cδaβ = Gδcaδδβ, T γ dαb = Lδγα δdb ,
T γ daβ = Hδda δγβ , T γ dαb = Kδγα δdb
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where the coefficients are given by

A(p1, p2) = (p1 − p2)
2

4(p1ω2 − p2ω1)
+

1

4
(1 − 2a)(p1ω2 − p2ω1),

B(p1, p2) = −E(p1, p2) = p1p2

p1ω2 − p2ω1
,

C(p1, p2) = F(p1, p2) = 1

2

√
(ω1 + 1)(ω2 + 1)(p1ω2 − p2ω1 + p2 − p1

p1ω2 − p2ω1
, (2.112)

D(p1, p2) = − (p1 − p2)
2

4(p1ω2 − p2ω1)
+

1

4
(1 − 2a)(p1ω2 − p2ω1),

G(p1, p2) = −L(p2, p1) = − p2
1 − p2

2

4(p1ω2 − p2ω1)
+

1

4
(1 − 2a)(p1ω2 − p2ω1),

H(p1, p2) = K(p1, p2) = 1

2

p1p2

p1ω2 − p2ω1

(ω1 + 1)(ω2 + 1)− p1p2√
(ω1 + 1)(ω2 + 1)

,

where we have also added the additional contribution which vanishes in the a = 1/2 gauge.
The T-matrix T is covariant under the SU(2)× SU(2) transformations that reflect the manifest
SU(2)4 symmetry of the light-cone string sigma model. The factorization of the T-matrix is a
non-trivial test of the integrability of the model.

2.4. Symmetry algebra

In this section we show that the symmetry algebra of the light-cone string sigma model in the
decompactification limit gets enlarged by two additional central charges which vanish on the
physical subspace of the model.

2.4.1. General structure of symmetry generators. The invariance of the Green–Schwarz
action under the group PSU(2,2|4) leads to the existence of conserved currents and charges.
As was shown in the previous section, see equation (1.54), the conserved currents can be
written in terms of Aα as follows:

J α = gg(x, χ)
(
γ αβA

(2)
β − κ

2
εαβ
(
A
(1)
β − A(3)β

))
g(x, χ)−1. (2.113)

The 8 × 8 supermatrix Q of conserved charges is then given by the integral over σ of J τ ,
equation (1.56). For our purposes it is convenient to express the charges in terms of the
momentum π . To this end, we note that, as follows from (2.18), π satisfies the following
equation of motion:

π = gγ τβA(2)β = gγ ττ
(
A(2)τ +

γ τσ

γ ττ
A(2)σ

)
. (2.114)

Therefore, we can express A(2)τ in terms of π , and substitute it into the expression for Q. After
some simple algebra we get

Q =
∫ r

−r
dσg(x, χ)

(
π − g κ

2

(
A(1)σ − A(3)σ

))
g(x, χ)−1.

The formula can be written in a more explicit form if we take into account that

A(1)σ − A(3)σ = ig(x)KF st
σ Kg(x)−1,
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where Fσ is an odd component of the current g−1(χ)∂σ g(χ) defined in (2.33). Then, the
psu(2, 2|4) charges are

Q =
∫ r

−r
dσ�g(χ)g(x)

(
π − ig

κ

2
g(x)KF st

σ Kg(x)−1

)
g(x)−1g(χ)−1�−1. (2.115)

The expression is very simple and it has an important property of being explicitly independent
of the world-sheet metric.

We also see that the matrix Q can be schematically written as follows:

Q =
∫ r

−r
dσ�U�−1, (2.116)

where U depends on physical fields (x, p, χ) but not on x± and, therefore, is a local function
of σ . The only dependence of Q on x± occurs through the matrix � (1.121) which has the
following form in the a = 1/2 light-cone gauge

� = e
i
2 x+�++ i

4 x−�− , (2.117)

where �± are defined in (2.22), and x+ = τ due to the light-cone gauge condition.
We recall that the field x− is unphysical and can be solved in terms of physical excitations

through the equation

x ′
− = − 1

g

(
pMx

′
M − i

2
str(�+χχ

′)
)

+ · · · , (2.118)

where · · · denote terms which are of higher order in the fields. This equation determines
x− up to a function of τ which is the zero mode of x− canonically conjugated to P+. The
τ -dependence of the zero mode can be determined from the evolution equation for x−. In
what follows we need to know the symmetry algebra generators in the decompactification
limit only. In this limit the Hamiltonian and the symmetry generators do not depend on P+

and, for this reason, the zero mode becomes a central element.
Linear combinations of components of the matrix Q produce charges which generate

rotations, dilatation, supersymmetry and so on. To single them out one should multiply Q by
a corresponding 8 × 8 matrix M, and take the supertrace

QM = str(QM). (2.119)

It is clear that the diagonal and off-diagonal 4 × 4 blocks of M single out bosonic and
fermionic charges of psu(2, 2|4), respectively. In particular, one can check that the light-cone
Hamiltonian can be obtained from Q as follows:

H = − i

2
str(Q�+), (2.120)

and the light-cone momentum P+ is given by

P+ = i

4
str(Q�−). (2.121)

Depending on the choice of M the charges QM ≡ QM(x+, x−) can be naturally classified
according to their dependence on x±. First, with respect to x− they are divided into kinematical
(independent of x−) and dynamical (dependent on x−). Kinematical generators do not
receive quantum corrections, while the dynamical generators do. Second, the charges, both
kinematical and dynamical, may or may not explicitly depend on x+ = τ .

In the Hamiltonian setting the conservation laws have the following form:

dQM

dτ
= ∂QM

∂τ
+ {H,QM} = 0.

65



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

d

k

k

kd

d

d

d

k

k

k

k

d

d

k d

M =M =

Red

Blue

Figure 3. The distribution of the kinematical and dynamical charges in the M supermatrix. The
red (dark) and blue (light) blocks correspond to the subalgebra J of psu(2, 2|4) which leaves the
Hamiltonian invariant.

Therefore, the generators which do not have explicit dependence on x+ = τ Poisson-commute
with the Hamiltonian. As follows from the Jacobi identity, they must form an algebra which
contains H as central element.

Analyzing the structure of Q one can establish how a generic matrix M is split into 2 × 2
blocks each of them giving rise either to kinematical or dynamical generators. This splitting
of M is shown in figure 3, where the kinematical blocks are denoted by k and the dynamical
ones by d, respectively. Furthermore, one can see that the blocks which are colored in red
and blue give rise to charges which are independent of x+ = τ ; by this reason these charges
commute with the Hamiltonian and form the manifest symmetry algebra of the gauge-fixed
string sigma model. Complementary, we note that the uncolored both kinematical (fermionic)
and dynamical (bosonic) generators do depend on x+.

These conclusions about the structure of M can be easily drawn by noting that � in
equation (2.117) is built out of two commuting matrices �+ and �−. For instance, leaving in
M the kinematical blocks only, i.e. M ≡ Mkin, we find that [�−,Mkin] = 0 and, therefore,
due to the structure of QM, see equation (2.119), the variable x− cancels out in QM. On the
other hand, any matrix from the red–blue submatrix J of M in figure 3 commutes with the
element �+ in psu(2, 2|4)

[�+,M] = 0,M ∈ J ,

leading to a charge QM independent of x+ = τ . Thus, for P+ finite we obtain the following
vector space decomposition of J :

J = psu(2|2)⊕ psu(2|2)⊕�+ ⊕�−.

The rank of the latter subalgebra is six and it coincides with that of psu(2, 2|4). In the case of
infinite P+ the last generator decouples.

Conjugating with � of (2.117), one finds

�−1Modd
dyn� = e− i

2 x−�−Modd
dyn, �−1Meven

dyn � = �2Meven
dyn ,

�−1Modd
kin� = eix+�+Modd

kin , �−1Meven
kin � = Meven

kin ,
(2.122)
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which shows that the x+ = τ independent matrices are indeed given by Modd
dyn and Meven

kin , i.e.
by the red and blue entries in figure 3. We see from figure 3 and (2.122) that in the symmetry
algebra all bosonic charges are kinematic, and all supercharges are dynamical.

The structure of Q discussed above is found for finite r and it also remains valid in the
decompactification limit r → ∞.

2.4.2. Centrally extended su(2|2) algebra. It is clear that the psu(2, 2|4) charges (2.115)
transform linearly under the bosonic subalgebra C defined in (1.127) because � commutes
with any element of this subalgebra. Therefore, to encode the transformation properties of the
charges under C, it is convenient to use the two-index notation introduced in section 1.4. The
time-dependent charges in the white blocks of figure 3 have the same indices as the bosonic
and fermionic fields Zαα̇, Y aȧ, θaα̇, ηaα̇ . The time-independent charges which commute with
the Hamiltonian and form the symmetry algebra can be represented in terms of 2 × 2 blocks
as follows:

Qsym =

⎛⎜⎜⎜⎜⎝
R 0 −Q† 0

0 R̊ 0 Q̊

Q 0 L 0

0 Q̊
†

0 L̊

⎞⎟⎟⎟⎟⎠. (2.123)

Here R, R̊ ∈ su(2, 2), and L, L̊ ∈ su(4) are the bosonic charges which generate the

transformations under C, and Q,Q†, Q̊, Q̊
†

are the eight complex supercharges. The bosonic
charges satisfy the usual reality and tracelessness conditions

R† = −R, R̊
† = −R̊, L† = −L, L̊

† = −L̊,
(2.124)

trR = trR̊ = trL = trL̊ = 0.

These charges should be complemented by the matrices representing the Hamiltonian and the
light-cone momentum which are of the form

QH = − i

4
H

⎛⎜⎜⎝
−11 0 0 0
0 11 0 0
0 0 11 0
0 0 0 −11

⎞⎟⎟⎠, QP+ = i

2
P+

⎛⎜⎜⎝
11 0 0 0
0 −11 0 0
0 0 11 0
0 0 0 −11

⎞⎟⎟⎠. (2.125)

In our analysis the light-cone momentum will not play any role because we will only discuss
the decompactification limit where P+ → ∞.

Under the action of the group element (1.128) the matrix (2.123) transforms as follows:

Qsym → GQsymG
−1 =

⎛⎜⎜⎜⎝
g1Rg

−1
1 0 −g1Q

†
g

−1
3 0

0 g2R̊g
−1
2 0 g2Q̊g

−1
4

g3Qg
−1
1 0 g3Lg

−1
3 0

0 g4Q̊
†
g

−1
2 0 g4L̊g

−1
4

⎞⎟⎟⎟⎠. (2.126)

Since the charges R,L,Q,Q† transform under one su(2) ∈ su(2, 2) and one su(2) ∈ su(4),

and the charges R̊, L̊, Q̊, Q̊† transform under another su(2) ∈ su(2, 2) and another su(2) ∈
su(4), the charges from the first group must (anti-)commute with those from the second group.
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Repeating the considerations in subsection 1.4.2, we find that the 2×2 blocks R,L,Q,Q†

are expressed via covariant two-index entries Lab,Rαβ,Qαb,Q
†
aβ as

L = − i

(
L12 −L11

L22 −L21

)
, R = i

(
R34 −R33

R44 −R43

)
,

Q = eiπ/4

(
Q41 −Q31

Q42 −Q32

)
, Q† = e−iπ/4

(
Q

†
14 Q

†
24

−Q
†
13 −Q

†
23

)
,

and R̊, L̊, Q̊, Q̊† are expressed through Lȧḃ,Rα̇β̇ ,Qα̇ḃ,Q
†
ȧβ̇

as

L̊ = −i

(
L1̇2̇ −L1̇1̇

L2̇2̇ −L2̇1̇

)
, R̊ = i

(
R3̇4̇ −R3̇3̇

R4̇4̇ −R4̇3̇

)
,

Q̊ = −eiπ/4

(
Q3̇2̇ −Q3̇1̇

Q4̇2̇ −Q4̇1̇

)
, Q̊

† = −e−iπ/4

(
Q

†
2̇3̇

Q
†
2̇4̇

−Q
†
1̇3̇

−Q
†
1̇4̇

)
.

Here, by definition, Q
†
aβ and Q

†
ȧβ̇

are understood as Hermitian conjugate of Qβa and Qβ̇ȧ ,
respectively,

(Qβa)† = Q
†
aβ, (Qβ̇ȧ)† = Q

†
ȧβ̇
,

and the tracelessness condition for bosonic charges implies that they are symmetric: Lab = Lba

and so on. Note also that according to the transformation rule (2.126) for Q, it would be more
consistent to write the entries of Q as Qbα rather than Qαb. However, the order of the indices
does not matter because the transformations by the group elements g1 and g3 are independent,
and with the choice we made many formulae for the dotted operators are obtained from the
undotted ones by replacing correspondingly the indices. The phases e±iπ/4 in the expressions
of the supercharges are introduced to simplify their representation in terms of creation and
annihilation operators, see appendix 2.5.4.

We can lower the indices by using the skew-symmetric tensor, and in what follows we
find it sometimes convenient to lower the first index and use the following charges:

La
b = εacLcb, Rα

β = εαγRγβ, Qα
b = εαγQγ b, Q

†
b
α = εαγQ

†
bγ .

One can check that these charges satisfy the following conditions:(
La
b
)† = Lb

a, L1
1 + L2

2 = 0,
(
Rα

β
)† = Rβ

α,

R3
3 + R4

4 = 0,
(
Qα

b
)† = Q

†
b
α.

We show in the following subsection that the bosonic rotation generators La
b,Rα

β , the
supersymmetry generators Qα

a,Q†
a
α , and three central elements H,C and C† form the centrally

extended su(2|2) algebra which we will denote su(2|2)C . The su(2|2)C algebra relations can
be written in the following form:[
La
b, Jc
] = δbcJa − 1

2δ
b
aJc,

[
Rα

β, Jγ
] = δβγ Jα − 1

2δ
β
αJγ ,[

La
b, Jc
] = −δcaJb + 1

2δ
b
aJ
c,

[
Rα

β, Jγ
] = −δγα Jβ + 1

2δ
β
αJγ , (2.127){

Qα
a,Q

†
b
β
} = δabRαβ + δβαLb

a + 1
2δ
a
b δ
β
αH,{

Qα
a,Qβ

b
} = εαβεabC, {

Q†
a
α,Q

†
b
β
} = εabεαβC†.

Here the first two lines indicate how the indices c and γ of any Lie algebra generator transform
under the action of La

b and Rα
β . Unitarity of the string sigma model requires the world-sheet

light-cone Hamiltonian H to be Hermitian, and the supersymmetry generators Qα
a and Q†

a
α ,
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and the central elements C and C† to be Hermitian conjugate to each other:
(
Qα

a
)† = Q†

a
α . If

one gives up the Hermiticity conditions then all the generators are considered as independent.
As we argue in the following subsection, the central elements C and C† are expressed

through the world-sheet momentum pws ≡ P as follows:

C = i

2
g(eiP − 1) e2iξ , C† = − i

2
g(e−iP − 1) e−2iξ . (2.128)

In general, the phase ξ is an arbitrary function of the central elements. Its presence
reflects the obvious fact that the algebra (2.127) admits a U(1) outer automorphism:
Q → eiξQ,C → e2iξC. In perturbative string theory the phase ξ vanishes, as we will
see shortly, and we find it convenient to set ξ = 0 for any value of the string tension g.
It is important to realize that the central charges C and C† vanish on the physical subspace
P|�〉 = 0 where the usual su(2|2) algebra is restored.

The remaining generators Lȧ
ḃ,Rα̇

β̇ ,Qα̇
ȧ ,Q

†
ȧ
α̇ form another copy of su(2|2)C with the

same three central elements H,C and C†. Thus, the manifest symmetry algebra of the light-
cone AdS5 × S5 string sigma model coincides with the sum of two copies of su(2|2)C sharing
the same set of central elements. Because of the location of the generators in the charge matrix
(2.123) we will often refer to the algebras generated by undotted and dotted charges as to the
left and right su(2|2)C algebras, respectively.

2.4.3. Deriving the central charges. Given the complexity of the supersymmetry generators
(2.115) in the light-cone gauge as well as the corresponding Poisson structure of the theory,
computation of the exact classical and quantum supersymmetry algebra is difficult. Hence,
simplifying perturbative methods need to be applied. The perturbative expansion of the
supersymmetry generators in powers of 1/g or, equivalently, in the number of fields defines a
particular expansion scheme. Since in the large string tension expansion one keeps P̂ = gP

fixed, the corresponding expansion of the central charges starts with −P̂/2, and can be seen
already at the quadratic order. This expansion, however, does not allow one to determine the
exact form of the central charges (2.128) because they are non-trivial functions of 1/g. To
overcome this difficulty, in this subsection we describe a ‘hybrid’ expansion scheme which
can be used to determine the exact form of the central charges. To be precise we determine
only the part of the central charges which is independent of fermionic fields. We find that this
part depends solely on the piece of the world-sheet momentum which involves the bosonic
fields. Since the central charges must vanish if the world-sheet momentum does, the exact
form of the central charges is, therefore, unambiguously fixed by its bosonic part.

More precisely, as can be seen from (2.115) and (2.123), a dynamical supersymmetry
generator has the following generic structure:

QA
B =
∫

dσeiαx−�(x, p, χ; g), (2.129)

where the parameter α in the exponent of (2.129) is equal to α = 1/2(εA−εB), and, therefore,

α = 1/2 for supercharges Q and Q̊, and α = −1/2 for supercharges Q† and Q̊
†
. Then, the

function�(x, p, χ; g) is a local function of transversal bosonic fields and fermionic variables.
It depends on g and can be expanded, quite analogously to the Hamiltonian, in power series

�(x, p, χ; g) = �2(x, p, χ) +
1

g
�4(x, p, χ) + · · · .

Here�2(x, p, χ) is quadratic in fields,�4(x, p, χ) is quartic and so on. Clearly, every term in
this series also admits a finite expansion in the number of fermions. In the usual perturbative
expansion we would also have to expand the non-local ‘vertex’ eiαx− in powers of 1/g because
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x ′
− ∼ −px ′/g + · · ·. In the hybrid expansion we do not expand eiαx− but rather treat it as a

rigid object.
The complete expression for a supercharge is rather cumbersome. However, we see that

the supercharges and their algebra can be studied perturbatively: first by expanding up to a
given order in 1/g and then by truncating the resulting polynomial up to a given number of
fermionic variables. Then, as was discussed above the exact form of the central charges is
completely fixed by their parts which depend only on bosons. Thus, to determine these charges
it is sufficient to consider the terms in QA

B which are linear in fermions, and compute their
Poisson brackets (or anticommutators in quantum theory) keeping only terms independent of
fermions. This is, however, a complicated problem because the Poisson brackets of fermions
appearing in (2.4) have a highly non-trivial dependence on bosons as have been discussed
in subsection 2.1.5. We have shown in subsection 2.2.3 that to have the canonical Poisson
brackets one should perform a field redefinition which can be determined up to any given
order in 1/g. Taking into account the field redefinition, integrating by parts if necessary, and
using the relation x ′

− ∼ −px ′/g + · · ·, one can cast any supercharge (2.129) in the following
symbolic form:

QA
B =
∫

dσeiαx−χ ·
(
ϒ1(x, p) +

1

g
ϒ3(x, p) + · · ·

)
+ O(χ3), (2.130)

where ϒ1 and ϒ3 are linear and cubic in bosonic fields, respectively. The explicit form of the
supercharges expanded up to the leading order in 1/g can be found in appendix 2.5.4.

It is clear now that the bosonic part of the Poisson bracket of two supercharges is of the
form

{Q1,Q2} ∼
∫ ∞

−∞
dσei(α1+α2)x−

(
ϒ
(1)
1 (x, p)ϒ

(2)
1 (x, p)

+
1

g

(
ϒ
(1)
1 (x, p)ϒ

(2)
3 (x, p) +ϒ(1)3 (x, p)ϒ

(2)
1 (x, p)

)
+ · · ·
)
, (2.131)

where Q1,2 ≡ Q
B1,2

A1,2
. Computing the product ϒ(1)1 (x, p)ϒ

(2)
1 (x, p) in the case α1 = α2 =

±1/2, we find that it is given by

ϒ
(1)
1 (x, p)ϒ

(2)
1 (x, p) ∼ gx ′

− +
d

dσ
f (x, p), (2.132)

where f (x, p) is a local function of transversal coordinates and momenta. The first term in
(2.132) nicely combines with e±ix− to give d

dσ e±ix− , and integrating this expression over σ ,
we obtain the sought for central charges∫ ∞

−∞
dσ

d

dσ
e±ix− = e±ix−(∞) − e±ix−(−∞) = e±ix−(−∞)(e±ipws − 1), (2.133)

where we take into account that x−(∞)− x−(−∞) = pws.
Making use of the explicit expressions for the supercharges from appendix 2.5.4, and

identifying x−(−∞) ≡ ξ , one can easily confirm that the central charges C and C† are given
by equations (2.128). Thus, the phase ξ in the central charges determines the boundary
conditions for the light-cone coordinate x−. As was mentioned above, in what follows we
choose ξ = 0. It is worth noting however that there is another natural choice of the boundary
conditions for the light-cone coordinate x−

x−(+∞) = −x−(−∞) = pws

2
.

This is the symmetric condition which treats both boundaries on equal footing, and leads to a
real central charge

C = C† = −g sin

(
pws

2

)
. (2.134)
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Since we already obtained the expected central charges, the contribution of all the
other terms in (2.131) should vanish. Indeed, the second term in (2.132) contributes to
the order 1/g in the expansion as can be easily seen integrating by parts and using the relation
x ′

− ∼ −px ′/g + · · ·. Taking into account the additional contribution to the terms of order
1/g in (2.131), one can check that the total contribution is given by a σ -derivative of a local
function of x and p, and, therefore, only contributes to terms of order 1/g2.

It is also not difficult to verify up to the quartic order in fields that the Poisson bracket of
supercharges with α1 = −α2 gives the Hamiltonian and the kinematic generators in complete
agreement with the centrally extended su(2|2) algebra (2.127).

The next step is to show that the Hamiltonian commutes with all dynamical supercharges.
As was already mentioned, this can be done order by order in perturbation theory in powers of
the inverse string tension 1/g and in number of fermionic variables. One can demonstrate that
up to the first non-trivial order 1/g the supercharge Q truncated to the terms linear in fermions
indeed commutes with H. To do this, one needs to keep in H all quadratic and quartic bosonic
terms, and quadratic and quartic terms which are quadratic in fermions.

The computation we described above was purely classical, and one may want to know if
quantizing the model could lead to some anomaly in the symmetry algebra. One can compute
the symmetry algebra in the plane-wave limit where one keeps only quadratic terms in all the
symmetry generators, and show that all potentially divergent terms cancel out and no quantum
anomaly arises. The simplest way to do the computation is to use the form of the symmetry
algebra generators in terms of the creation and annihilation operators from appendix (2.5.4).

Another quantum effect might be a modification of the functional dependence of the
central charges on the string tension and the world-sheet momentum. It is believed, however,
that the form (2.128) remains unmodified by quantum corrections, as it is consistent with both
string (large g) and field (small g) theory computations of the dispersion relation.

Thus, we have shown that in the decompactification limit and for physical fields chosen
to rapidly decrease at infinity the corresponding string model enjoys the symmetry which
coincides with two copies of the centrally extended su(2|2) algebra (2.127) sharing the same
Hamiltonian and central charges.

2.5. Appendix

2.5.1. Giant magnon: explicit formulae. Here we unwrap some formulae from
subsection 2.2.2 and specify them for the three simplest cases a = 0, 1/2, 1.

The density of the gauge-fixed Hamiltonian H appearing in (2.38) as a function of the
coordinate z and the momentum pz canonically conjugate to z is

H = − 1 − (1 − a)z2

1 − 2a − (1 − a)2z2

+

√
1+ (1− z2)(1− 2a− (1− a)2z2)p2

z

√
1− z2 + (1− 2a− (1 − a)2z2)z′2

1 − 2a − (1 − a)2z2
. (2.135)

The density of the Hamiltonian (2.135) for the three simplest cases:

a = 0 : H = −1 +

√
1 + z′2

1 − z2

√
1 + p2

z (1 − z2)2,

a = 1

2
: H = −2 +

4

z2
− 1

z2

√
4(1 − z2)− z2z′2

√
4 − p2

z z
2(1 − z2),

a = 1 : H = 1 −
√

1 − z2 − (z′)2
√

1 − (1 − z2)p2
z .
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Solving the equation of motion for pz that follows from the action (2.38), we determine the
momentum as a function of ż and z

pz = ż√
(1 − z2)

√
(1 − z2)2 − (1 − 2a − (1 − a)2z2)(ż2 − (1 − z2)(z′)2)

. (2.136)

The momentum pz as a function of ż and z for the three simplest cases:

a = 0 : pz = ż

(1 − z2)
√

1 − z2 − ż2 + (1 − z2)z′2
,

a = 1

2
: pz = 2ż√

1 − z2
√

4(1 − z2)2 + z2(ż2 − (1 − z2)z′2)
,

a = 1 : pz = ż√
1 − z2
√
(1 − z2)2 + ż2 − (1 − z2)z′2

.

Substituting the solution (2.136) into the action (2.38), we obtain the action in the Lagrangian
form

S = g
∫ r

−r
dσ dτ

(
1 − (1 − a)z2

1 − 2a − (1 − a)2z2

−
√
(1 − z2)2 − (1 − 2a − (1 − a)2z2)(ż2 − (1 − z2)z′2)√

1 − z2(1 − 2a − (1 − a)2z2)

)
. (2.137)

The action (2.38) in the Lagrangian form for the three simplest cases:

a = 0 : S = g
∫ r

−r
dσ dτ

(
1 −
√

1 − z2 − ż2 + (1 − z2)z′2

1 − z2

)
,

a = 1

2
: S = g

∫ r
−r

dσ dτ

(
2 − 4

z2
+

2
√

4(1 − z2)2 + z2(ż2 − (1 − z2)z′2)

z2
√

1 − z2

)
,

a = 1 : S = g
∫ r

−r
dσ dτ

(
−1 +

√
(1 − z2)2 + ż2 − (1 − z2)z′2√

1 − z2

)
.

Substituting the ansatz (2.39) into the action (2.137), we get the following Langrangian of the
reduced model:

Lred = 1 − (1 − a)z2

1 − 2a − (1 − a)2z2
−
√
(1 − z2)2 + (1 − 2a − (1 − a)2z2)(1 − v2 − z2)z′2√

1 − z2(1 − 2a − (1 − a)2z2)
.

The Hamiltonian of the reduced one-dimensional model is

Hred = πzz′ − Lred = − 1 − (1 − a)z2

1 − 2a − (1 − a)2z2

+
(1 − z2)3/2

(1 − 2a − (1 − a)2z2)
√
(1 − z2)2 + (1 − 2a − (1 − a)2z2)(1 − v2 − z2)z′2

.

2.5.2. Quartic Hamiltonian in two-index fields. We use equation (2.58) to find the following
expressions for the density of the quartic Hamiltonian in terms of the two-index fields

H4 = Hb
4 + Hf

4 + Hbf

4 ,

where

Hb
4 = −2

(
Y aȧYaȧ − Zαα̇Zαα̇

)(
Y ′bḃY ′

bḃ
+ Z′ββ̇Z′

ββ̇

)
(2.138)
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is the bosonic Hamiltonian,

Hf

4 = 1

4

(
ηαȧηβḃη′

αȧη
′
βḃ

+ ηαȧη′βḃηαḃη
′
βȧ + η†αȧη†βḃη†′αȧη

†′
βḃ

+ η†αȧη†′βḃη†
αḃ
η
†′
βȧ

+ ηαȧηβḃη†′αȧη
†′
βḃ

+ η†αȧη
†
βḃ
η′αȧη′βḃ − ηαȧηαḃη†′βȧη†′βḃ − η†αȧη†αḃη′βȧη′

βḃ

+ θaα̇θbβ̇θ ′
aα̇θ

′
bβ̇

+ θaα̇θ ′bβ̇θbα̇θ ′
aβ̇

+ θ †aα̇θ †bβ̇θ †′aα̇θ
†′
bβ̇

+ θ †aα̇θ †′bβ̇θ †bα̇θ
†′
aβ̇

+ θaα̇θbβ̇θ †′aα̇θ
†′
bβ̇

+ θ †aα̇θ
†
bβ̇
θ ′aα̇θ ′bβ̇ − θaα̇θbα̇θ †′aβ̇θ †′bβ̇ − θ †aα̇θ †bα̇θ ′aβ̇θ ′

bβ̇

)
(2.139)

is the fermionic Hamiltonian, and

Hbf

4 = (Zαα̇Zαα̇ − Y aȧYaȧ)
(
η
†′
βḃ
η′βḃ + θ †′

bβ̇
θ ′bβ̇)− 4i

(
η′
αȧθ

′
aα̇ + η†′αȧθ

†′
aα̇

)
Y aȧZαα̇

− 1

2

(
ηαȧη

†′
αȧ + η†αȧη

′αȧ + θaα̇θ †′aα̇ + θ †aα̇θ
′aα̇)(Y bḃY ′

bḃ
+ Zββ̇Z′

ββ̇

)
+
(
ηαȧη

†′
αḃ

+ η†
αḃ
η′αȧ)YaȧY ′aḃ +

(
θaα̇θ

†′
bα̇ + θ †bα̇θ

′aα̇)YaȧY ′bȧ

+
(
ηβȧη

†′
αȧ + η†αȧη

′βȧ)Zαα̇Z′
βα̇ +
(
θaβ̇θ

†′
aα̇ + θ †

aβ̇
θ ′aα̇)Zαα̇Z′

αβ̇

+
iκ

4

((
ηαȧηαḃ + η†αȧη†

αḃ

)
(PaȧY

aḃ)′ +
(
θaα̇θbα̇ + θ †aα̇θ †bα̇

)
(PaȧY

bȧ)′

+
(
ηβȧη

αȧ + η†βȧη
†αȧ)(Pαα̇Zβα̇)′ +

(
θaβ̇θ

aα̇ + θ †
aβ̇
θ †aα̇
)
(Pαα̇Z

αβ̇)′
)

(2.140)

is the mixed Hamiltonian.

2.5.3. T-matrix. Here we list the full T-matrix in the uniform a = 1/2 light-cone gauge. To
simplify the notations and for visual clarity we use the following notations:

a
†
aȧ(p)→ Yaȧ, a

†
aȧ(p

′)→ Y ′
aȧ, a

†
αα̇(p)→ Zαα̇, a

†
αα̇(p

′)→ Z′
αα̇,

a
†
αȧ(p)→ ηαȧ, a

†
αȧ(p

′)→ η′
αȧ, a

†
aα̇(p)→ θαα̇, a

†
aα̇(p

′)→ θ ′
aα̇,

so that we have, in particular

|Yaȧη′
βḃ

〉 ≡ ∣∣a†aȧ(p)a†βḃ(p′)
〉
, |θaα̇Z′

ββ̇
〉 ≡ ∣∣a†aα̇(p)a†ββ̇(p′)

〉
.

Then we introduce the rapidity θ related to the momentum p and energy ω as follows:

p = sinh θ, ω = cosh θ.

Since the model is not Lorentz-invariant, the T-matrix does not depend only on the difference
θ − θ ′, and one may find the following identities useful:

pω′ − p′ω = sinh(θ − θ ′), (p − p′) cosh
θ − θ ′

2
= (ω + ω′) sinh

θ − θ ′

2

sinh
θ

2
= 1

2

√
ω + p − 1

2

√
ω − p, cosh

θ

2
= 1

2

√
ω + p +

1

2

√
ω − p

sinh
θ − θ ′

2
= 1

2

√
(ω + p)(ω′ − p′)− 1

2

√
(ω − p)(ω′ + p′)

cosh
θ − θ ′

2
= 1

2

√
(ω + p)(ω′ − p′) +

1

2

√
(ω − p)(ω′ + p′).

The two momenta p and p′ satisfy p > p′.
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Boson–Boson

T · |YaȧY ′
bḃ

〉 = +
1

2

(p − p′)2

pω′ − p′ω
|YaȧY ′

bḃ
〉 +

pp′

pω′ − p′ω
(|YaḃY ′

bȧ〉 + |YbȧY ′
aḃ

〉)

− pp′

pω′ − p′ω
sinh

θ − θ ′

2
(εȧḃε

α̇β̇ |ηaα̇η′
bβ̇

〉 + εabε
αβ |θαȧθ ′

βḃ
〉)

T · |Zαα̇Z′
ββ̇

〉 = −1

2

(p − p′)2

pω′ − p′ω
|Zαα̇Z′

ββ̇
〉 − pp′

pω′ − p′ω
(|Zαβ̇Z′

βα̇〉 + |Zβα̇Z′
αβ̇

〉)

+
pp′

pω′ − p′ω
sinh

θ − θ ′

2
(εα̇β̇ε

ȧḃ|θαȧθ ′
βḃ

〉 + εαβε
ab|ηaα̇η′

bβ̇
〉)

T · |YaȧZ′
αα̇〉 = −1

2

p2 − p′2

pω′ − p′ω
|YaȧZ′

αα̇〉 +
pp′

pω′ − p′ω
cosh

θ − θ ′

2
(|θαȧη′

aα̇〉 − |ηaα̇θ ′
αȧ〉)

T · |Zαα̇Y ′
aȧ〉 = +

1

2

p2 − p′2

pω′ − p′ω
|Zαα̇Y ′

aȧ〉 − pp′

pω′ − p′ω
cosh

θ − θ ′

2
(|ηaα̇θ ′

αȧ〉 − |θαȧη′
aα̇〉)

Fermion–Fermion

T · |ηaα̇η′
bβ̇

〉 = +
pp′

pω′ − p′ω
(|ηbα̇η′

aβ̇
〉 − |ηaβ̇η′

bα̇〉)

− pp′

pω′ − p′ω
sinh

θ − θ ′

2
(εα̇β̇ε

ȧḃ|YaȧY ′
bḃ

〉 − εabεαβ |Zαα̇Z′
ββ̇

〉)

T · |θαȧθ ′
βḃ

〉 = − pp′

pω′ − p′ω
(|θβȧθ ′

αḃ
〉 − |θαḃθ ′

βȧ〉)

+
pp′

pω′ − p′ω
sinh

θ − θ ′

2
(εȧḃε

α̇β̇ |Zαα̇Z′
ββ̇

〉 − εαβεab|YaȧY ′
bḃ

〉)

T · |ηaα̇θ ′
βḃ

〉 = − pp′

pω′ − p′ω
cosh

θ − θ ′

2
(|YaḃZ′

βα̇〉 + |Zβα̇Y ′
aḃ

〉)

T · |θαȧη′
bβ̇

〉 = +
pp′

pω′ − p′ω
cosh

θ − θ ′

2
(|Zαβ̇Y ′

bȧ〉 + |YbȧZ′
αβ̇

〉).

Boson–Fermion

T · |Yaȧη′
bβ̇

〉 = +
1

2

(p′ − p)p′

pω′ − p′ω
|Yaȧη′

bβ̇
〉 +

pp′

pω′ − p′ω
|Ybȧη′

aβ̇
〉

+
pp′

pω′ − p′ω
cosh

θ − θ ′

2
|ηaβ̇Y ′

bȧ〉 − pp′

pω′ − p′ω
sinh

θ − θ ′

2
εabε

αβ |θαȧZ′
ββ̇

〉

T · |Yaȧθ ′
βḃ

〉 = +
1

2

(p′ − p)p′

pω′ − p′ω
|Yaȧθ ′

βḃ
〉 +

pp′

pω′ − p′ω
|Yaḃθ ′

βȧ〉

+
pp′

pω′ − p′ω
cosh

θ − θ ′

2
|θβȧY ′

aḃ
〉 +

pp′

pω′ − p′ω
sinh

θ − θ ′

2
εȧḃε

α̇β̇ |ηaα̇Z′
ββ̇

〉

T · |ηaα̇Y ′
bḃ

〉 = +
1

2

(p − p′)p
pω′ − p′ω

|ηaα̇Y ′
bḃ

〉 +
pp′

pω′ − p′ω
|ηbα̇Y ′

aḃ
〉

+
pp′

pω′ − p′ω
cosh

θ − θ ′

2
|Yaḃη′

bα̇〉 +
pp′

pω′ − p′ω
sinh

θ − θ ′

2
εabε

αβ |Zαα̇θ ′
βḃ

〉

T · |θαȧY ′
bḃ

〉 = +
1

2

(p − p′)p
pω′ − p′ω

|θαȧY ′
bḃ

〉 +
pp′

pω′ − p′ω
|θαḃY ′

bȧ〉
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+
pp′

pω′ − p′ω
cosh

θ − θ ′

2
|Ybȧθ ′

αḃ
〉 − pp′

pω′ − p′ω
sinh

θ − θ ′

2
εȧḃε

α̇β̇ |Zαα̇η′
bβ̇

〉

T · |Zαα̇η′
bβ̇

〉 = −1

2

(p′ − p)p′

pω′ − p′ω
|Zαα̇η′

bβ̇
〉 − pp′

pω′ − p′ω
|Zαβ̇η′

bα̇〉

− pp′

pω′ − p′ω
cosh

θ − θ ′

2
|ηbα̇Z′

αβ̇
〉 − pp′

pω′ − p′ω
sinh

θ − θ ′

2
εα̇β̇ε

ȧḃ|θαȧY ′
bḃ

〉

T · |Zαα̇θ ′
βḃ

〉 = −1

2

(p′ − p)p′

pω′ − p′ω
|Zαα̇θ ′

βḃ
〉 − pp′

pω′ − p′ω
|Zβα̇θ ′

αḃ
〉

− pp′

pω′ − p′ω
cosh

θ − θ ′

2
|θαḃZ′

βα̇〉 +
pp′

pω′ − p′ω
sinh

θ − θ ′

2
εαβε

ab|ηaα̇Y ′
bḃ

〉

T · |ηaα̇Z′
ββ̇

〉 = −1

2

(p − p′)p
pω′ − p′ω

|ηaα̇Z′
ββ̇

〉 − pp′

pω′ − p′ω
|ηaβ̇Z′

βα̇〉

− pp′

pω′ − p′ω
cosh

θ − θ ′

2
|Zβα̇η′

aβ̇
〉 +

pp′

pω′ − p′ω
sinh

θ − θ ′

2
εα̇β̇ε

ȧḃ|Yaȧθ ′
βḃ

〉

T · |θαȧZ′
ββ̇

〉 = −1

2

(p − p′)p
pω′ − p′ω

|θαȧZ′
ββ̇

〉 − pp′

pω′ − p′ω
|θβȧZ′

αβ̇
〉

− pp′

pω′ − p′ω
cosh

θ − θ ′

2
|Zαβ̇θ ′

βȧ〉 − pp′

pω′ − p′ω
sinh

θ − θ ′

2
εαβε

ab|Yaȧη′
bβ̇

〉

2.5.4. Symmetry algebra generators. The generators of the centrally extended su(2|2) ⊕
su(2|2) symmetry algebra up to quadratic order in the fields are given by the following
expressions:

Lab =
∫

dσ

[
i

2
(εacPcċY

bċ + εbcPcċY
aċ)− 1

4

(
εacθ

†
cγ̇ θ

bγ̇ + εbcθ †cγ̇ θ
aγ̇
)]
,

Rαβ =
∫

dσ

[
i

2
(εαγ Pγ γ̇ Z

βγ̇ + εβγ Pγ γ̇ Z
αγ̇ )− 1

4

(
εαγ η

†
γ ċη

βċ + εβγ η†γ ċη
αċ
)]
,

Qαb = e−iπ/4
∫

dσ
1

2
e

i
2 x−
(− iεαγ P bċη†γ ċ − 2εαγ Y bċη†γ ċ − 2εċḋY

bċη′αḋ

− εβ̇γ̇ P αβ̇θbγ̇ − 2iεγ̇ ρ̇Z
αγ̇ θbρ̇ − 2iεbcZαγ̇ θ †′cγ̇

)
,

Q
†
bα = eiπ/4

∫
dσ

1

2
e− i

2 x−
(
iεαγ Pbċη

γ ċ − 2εαγ Ybċη
γ ċ − 2εċḋYbċη

†′
αḋ

− εβ̇γ̇ Pαβ̇θ †bγ̇ + 2iεγ̇ ρ̇Zαγ̇ θ
†
bρ̇ + 2iεbcZ

αγ̇ θ ′cγ̇ ),
Lȧḃ =
∫

dσ

[
i

2

(
εȧċPcċY

cḃ + εḃċPcċY
cȧ
)− 1

4

(
εȧċη

†
γ ċη

γ ḃ + εḃċη†γ ċη
γ ȧ
)]
,

Rα̇β̇ =
∫

dσ

[
i

2

(
εα̇γ̇ Pγ γ̇ Z

γ β̇ + εβ̇γ̇ Pγ γ̇ Z
γ α̇
)− 1

4

(
εα̇γ̇ θ

†
cγ̇ θ

cβ̇ + εβ̇γ̇ θ †cα̇θ
cβ̇
)]
,

Qα̇ḃ = e−iπ/4
∫

dσ
1

2
e

i
2 x−
(− iεα̇γ̇ P cḃθ †cγ̇ − 2εα̇γ̇ Y cḃθ †cγ̇ − 2εcdY

cḃθ ′dα̇

+ εβγ P
βα̇ηγ ḃ + 2iεγρZ

γ α̇ηρḃ + 2iεḃċZγ α̇η†′γ ċ
)
,

Q
†
ḃα̇

= eiπ/4
∫

dσ
1

2
e− i

2 x−
(
iεα̇γ̇ Pcḃθ

cγ̇ − 2εα̇γ̇ Ycḃθ
dγ̇ − 2εḃċY

cċθ
†′
cα̇

+ εβγ Pβα̇η
†
γ ḃ

− 2iεα̇γ̇ Z
βγ̇ η

†
βḃ

− 2iεḃċZγ α̇η
′γ ċ),
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and the Hamiltonian H and the world-sheet momentum P up to quadratic order in the fields
are given by

H2 =
∫

dσ

(
1

4
PaȧP

aȧ + YaȧY
aȧ + Y ′

aȧY
′aȧ +

1

4
Pαα̇P

αα̇ + Zαα̇Z
αα̇ + Z′

αα̇Z
′αα̇

+ η†αȧη
αȧ +

κ

2
ηαȧη′

αȧ − κ

2
η†αȧη

′†
αȧ + θ †aα̇θ

aα̇ +
κ

2
θaα̇θ ′

aα̇ − κ

2
θ †aα̇θ

′†
aα̇

)
,

P = P̂

g
= − 1

g

∫
dσ
(
PaȧY

′aȧ + Pαα̇Z
′αα̇ + iθ †αȧθ

′αȧ + iη†aα̇η
′aα̇).

Lowering the first (or raising the second) index and omitting e±ix−/2, one gets the following
expressions for these charges in terms of the creation and annihilation operators:

La
b =
∫

dp
∑
Ṁ

1

2

(
a
†
aṀ
abṀ − εadεbca†cṀadṀ

)
,

Rα
β =
∫

dp
∑
Ṁ

1

2

(
a
†
αṀ
aβṀ − εαρεβγ a†γ ṀaρṀ

)
,

Qα
b =
∫

dp
∑
Ṁ

(
fpa

†
αṀ
abṀ − hpεαγ εbca†cṀaγ Ṁ

)
,

Q
†α
b =
∫

dp
∑
Ṁ

(
fpa

†
bṀ
aαṀ − hpεαγ εbca†γ ṀacṀ

)
,

Lȧ
ḃ =
∫

dp
∑
M

1

2

(
a
†
Mȧa

Mḃ − εȧḋ εḃċa†MċaMḋ
)
,

Rα̇
β̇ =
∫

dp
∑
M

1

2

(
a
†
Mα̇a

Mβ̇ − εα̇ρ̇εβ̇γ̇ a†Mγ̇ aMρ̇
)
,

Qα̇
ḃ =
∫

dp
∑
M

(−1)εM
(
fpa

†
Mα̇a

Mḃ − hpεα̇γ̇ εḃċa†MċaMγ̇
)
,

Q
†α̇
ḃ

=
∫

dp
∑
M

(−1)εM
(
fpa

†
Mḃ
aMα̇ − hpεα̇γ̇ εḃċa†Mγ̇ aMċ

)
,

H2 =
∫

dp
∑
M,Ṁ

ωpa
†
MṀ
aMṀ, P = P̂

g
= 1

g

∫
dp
∑
M,Ṁ

pa
†
MṀ
aMṀ.

2.5.5. Poisson brackets and the moment map. The group PSU(2, 2|4) acts on the coset
space (1.1) by multiplication of a coset element by a group element from the left. Fixing the
light-cone gauge and solving the Virasoro constraints, we obtain a well-defined symplectic
structure ω (the inverse of the Poisson bracket) for physical fields. Therefore, now we are
able to study the Poisson algebra of the Noether charges corresponding to infinitesimal global
symmetry transformations generated by the Lie algebra psu(2, 2|4). In the first place we are
interested in those charges which leave the gauge-fixed Hamiltonian and, as a consequence,
the symplectic structure of the theory invariant; the corresponding subspace in psu(2, 2|4)will
be called J .

Since the symplectic form ω remains invariant under the action of J , to every element
M ∈ J one can associate a locally Hamiltonian phase flow ξM with the Hamiltonian function
being the Noether charge QM

ω(ξM, . . .) + d QM = 0. (2.141)
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Identifying psu(2, 2|4) with its dual space, psu(2, 2|4)∗, by using the supertrace operation,
we can treat the matrix Q as the moment map which maps the phase space (x, p, χ) into the
dual space to the Lie algebra

Q : (x, p, χ)→ psu(2, 2|4)∗
and it allows one to associate to any element M of psu(2, 2|4) a function QM on the phase
space. This linear mapping from the Lie algebra into the space of functions on the phase
space is given by equation (2.119). The function QM is a Hamiltonian function, i.e. it obeys
equation (2.141), only if M ∈ J . Although the elements of psu(2, 2|4) which do not belong
to J are symmetries of the gauge-fixed action, they leave neither the Hamiltonian nor the
symplectic structure invariant.

As is well known, equation (2.141) implies the following general formula for the Poisson
bracket of the Noether charges QM:

{QM1 ,QM2} = (−1)εM1 εM2 str(Q[M1,M2]) + C(M1,M2), (2.142)

where M1,2 ∈ J . Here εM is the parity of a supermatrix M and [M1,M2] is the graded
commutator, i.e. it is the anti-commutator if both M1 and M2 are odd matrices, and the
commutator if at least one of them is even. The first term in the right-hand side of equation
(2.142) reflects the fact that the Poisson bracket of the Noether charges QM1 and QM2 gives a
charge corresponding to the commutator [M1,M2]. The normalization prefactor (−1)εM1 εM2

is of no great importance and it is related to our specific choice of normalizing the even elements
with respect to the odd ones inside the matrix Q. The quantity C(M1,M2) in the right-hand
side of equation (2.142) is the central extension, i.e. a bilinear graded skew-symmetric form
on the Lie algebra J . It Poisson-commutes with all QM,M ∈ J . The Jacobi identity for the
bracket (2.142) implies that C(M1,M2) is a two-dimensional cocycle of the Lie algebra J .
For simple Lie algebras such a cocycle necessarily vanishes, while for super Lie algebras it is
generally not the case. Since we consider a finite-dimensional super Lie algebra the central
extension vanishes if the element M is bosonic: C(M, . . .) = 0.

Some comments are necessary here. As we already mentioned, the standard feature of
the light-cone closed string theory is the presence of the level-matching constraint pws = 0. In
the off-shell theory we rather keep pws non-vanishing. The light-cone Hamiltonian commutes
with pws: {H,pws} = 0, i.e. pws is an integral of motion. The Poisson bracket (2.142) with
the vanishing central term is valid on-shell and it is the off-shell theory where one could expect
the appearance of a non-trivial central extension. Below we determine a general form of the
central extension based on symmetry arguments only. The explicit evaluation of the Poisson
brackets which justifies formula (2.142) was discussed in the main text.

Let us note that formula (2.142) makes it easy to reobtain our results on the structure of
J . Indeed, from equation (2.142) we find that the invariance subalgebra J ⊂ psu(2, 2|4) of
the Hamiltonian is determined by the condition

{H,QM} = str(Q[�+,M]) = 0.

Thus, J is the stabilizer of the element �+ in psu(2, 2|4)
[�+,M] = 0, M ∈ J .

Obviously, J coincides with the red–blue submatrix of M in figure 3. Thus, for P+ being
finite20 we would obtain the following vector space decomposition of J :

J = psu(2|2)⊕ psu(2|2)⊕�+ ⊕�−.
20 For P+ finite the subalgebra which leaves invariant both H and P+ coincides with the even subalgebra Jeven of J .
In fact Jeven is nothing else but the algebra C defined in (1.127). Indeed, according to equations (2.120) and (2.121),
Jeven arises as the simultaneous solution the two equations, [�+,M] = 0 and [�−,M] = 0 or, in other words, it
is the centralizer of �(t, φ) given by equation (1.121). Together with �± the algebra C comprises the red and blue
diagonal blocks in figure 3.
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The rank of the latter subalgebra is six and it coincides with that of psu(2, 2|4). In the case of
infinite P+ the last generator decouples.

Now we are ready to determine the general form of the central term in equation (2.142).
Denote by Jeven ⊂ J the even (bosonic) subalgebra of J . It is represented by the red and
blue diagonal blocks in figure 3. Let Geven be the corresponding group. The adjoint action of
Geven preserves the Z2-grading of J . Obviously, if we perform the transformation

Q → gQg−1, M → g−1Mg

with an element g ∈ Geven the charge QM remains invariant. This transformation leaves
the lhs of the bracket (2.142) invariant. As a consequence, the central term must satisfy the
following invariance condition:

C(gM1g
−1, gM2g

−1) = C(M1,M2). (2.143)

It is not difficult to find a general expression for a bilinear graded skew-symmetric form on J
which satisfies this condition. It is given by

C(M1,M2) = str
((
�M1�Mt

2 + (−1)εM1 εM2�M2�Mt
1

)
 
)
. (2.144)

Here

 = −1

2

⎛⎜⎜⎝
c3112 0 0 0

0 c1112 0 0
0 0 c4112 0
0 0 0 c2112

⎞⎟⎟⎠, (2.145)

where 112 is the two-dimensional identity matrix and

� =

⎛⎜⎜⎝
ε 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 ε

⎞⎟⎟⎠,
where ε is defined in equation (1.131). Note that � is essentially the charge conjugation
matrix. Condition (2.143) follows from the form of the matrix  and the equation

J t
even� + �Jeven = 0.

The coefficients ci, i = 1, . . . , 4 can depend on the physical fields and they are central with
respect to the action of J

{ci,QM} = 0,M ∈ J .
By using equation (2.144) one can check that the cocycle condition for C(M1,M2) is trivially
satisfied. In accordance with our assumptions, C(M1,M2) does not vanish only if both M1

and M2 are odd.
Taking into account thatJ contains two identical subalgebras psu(2|2)we can put c1 = c3

and c2 = c4. Thus, general symmetry arguments fix the form of the central extension up to
two central functions c1 and c2. Since we consider the algebra psu(2|2), which is the real
form of psl(2|2), the conjugation rule implies that c1 = −c∗2.

2.6. Bibliographic remarks

The phase-space light-cone gauge for strings in flat space was introduced in [83]. It can be
generalized to strings moving in a curved background with at least one time and one space
isometry directions. If one chooses the time and space isometries from the AdS part of
the AdS5 × S5 background one gets the light-cone gauge by [84]. The uniform light-cone
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gauge we discuss was introduced in [13, 85, 86], and belongs to the class of gauges used to
study the dynamics of spinning strings in AdS5 × S5 [87, 88].

The BMN limit was introduced in the paper by Berenstein, Maldacena and Nastase [4].
In this limit the string sigma model on AdS5 × S5 reduces to that describing strings in the
plane-wave background [89, 90]. In the light-cone gauge this string sigma model is a free
theory of massive bosons and fermions, and it has been analyzed in [91, 92]. The 1/P+

corrections to the energy of string states were studied in [93–97, 14]. As was shown in [13],
the a = 0 uniform gauge is in fact a non-perturbative version of the perturbative light-cone
gauge used in [94–97].

The first-order formalism for the AdS5 × S5 superstring model, the full gauge-fixed
Lagrangian and its expansion up to quartic order were found in [14]; we follow this work very
closely in section 3. The reader might consult [14] for more details and missing derivations.

The decompactification limit was discussed in many papers, see e.g. [98–101]. One-
soliton solutions were identified with spin chain magnons and named ‘giant magnons’ in
[101]. The giant magnon solution was found in [101] by employing the conformal gauge.
The derivation of the light-cone gauge giant magnon solution and its dispersion relation in
subsection 2.2.2 follows closely [86].

The two-index notation for physical fields of the light-cone model was introduced in [81].
Our fields, however, differ from those in [81] by various factors. As a result, our expressions
for the supercharges in appendix 2.5.4 are slightly different from those in [81]. Nevertheless,
the T-matrix coincides with that computed there. The formulae for the T-matrix in
subsection 2.3 and in appendix 2.5.3 are taken from [81].

Formula (2.115) for the psu(2, 2|4) charges was obtained in [14]. The centrally extended
su(2|2) algebra was derived by using the hybrid expansion scheme in [15]. Given that
the central charges retain their functional form in quantum theory, the algebra allows one
to uniquely determine the dispersion relation. The dispersion relation implied by equation
(2.128) has been verified in field theory up to the fourth order [36] and in string theory up to the
second order [33]. The centrally extended su(2|2) algebra coincides with the one previously
suggested in the gauge theory spin chain context in [16]. There is however no gauge theory
derivation of the centrally extended algebra.

For the notion of the moment map and related issues discussed in appendix 2.5.2 we refer
to [102–104].

3. World-sheet S-matrix

In the previous sections we have demonstrated integrability of the classical string sigma model
and developed the semi-classical quantization scheme based on the large tension expansion.
The scattering matrix of world-sheet excitations has been computed in the Born approximation.
We have also shown that in the off-shell string theory the symmetry algebra of the light-cone
Hamiltonian coincides with two copies of the centrally extended psu(2|2) superalgebra sharing
the same set of central charges.

Given the current lack of non-perturbative quantization schemes, occurrence of
integrability in the corresponding quantum model is much harder to establish. Because
of ultra-violet and infra-red divergences arising in the process of perturbative quantization,
the definition of the quantum model itself is far from obvious. At best, it should rely on
finding regularization and renormalization schemes in the world-sheet theory which would
allow one to uplift the classical conservation laws to the quantum level. In view of this, to
make progress we will employ a ‘top-to-bottom’ approach. Namely, we will assume that
our model is quantum integrable and then will derive the corresponding consequences. The
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Figure 4. Factorization of the multi-particle scattering.

results obtained should obviously agree with available gauge and string perturbative data
in order to make quantum integrability plausible. Moreover, in certain cases the results
gathered in perturbative calculations will be essentially used to fix the structures which remain
undetermined from our assumption of quantum integrability.

In the decompactification limit when the circumference of the world-sheet cylinder tends
to infinity, the effective sigma model arising on the plane is massive. The massive character
of a theory usually implies that interactions fall off sufficiently fast with distance, so that
the concept of asymptotic states and their scattering makes sense. Under these circumstances
quantum integrability can be understood as the absence of particle production and factorization
of the multi-particle scattering into a sequence of two-body events.

In this section we will treat the string sigma model in the framework of the factorized
scattering theory. We will show that the symmetry principles alone lead to almost complete
determination of the exact world-sheet S-matrix and that the latter satisfies the standard axioms
of the factorized scattering theory. Besides the centrally extended psu(2|2) symmetry algebra,
an important role in our treatment will be played by crossing symmetry which exchanges
particles with anti-particles. Compatibility of scattering with crossing symmetry will imply
a non-trivial functional equation for an overall phase of the world-sheet S-matrix; the latter
can not be constrained by other known symmetries or by the requirement of factorization. We
will present some physically interesting solutions to this functional equation and discuss the
properties of the corresponding world-sheet S-matrix.

3.1. Elements of factorized scattering theory

Consider scattering in a two-dimensional quantum field theory that exhibits an infinite number
of conservation laws (charges) qk, k = 1, . . . ,∞, which all mutually commute. Obviously,
there exists a basis of one-particle states in which these charges act diagonally

qk|p〉 = qk(p)|p〉.
If these charges are functionally independent then the corresponding scattering theory turns
out to be highly constrained. First, the number of particles cannot change in the collision
process; particle production is absent. Second, additivity of the conservation laws implies that∑

j∈ in

qk(pj ) =
∑
j∈ out

qk(pj ) for any k.

Thus, the set of initial momenta is preserved under collision, the particles are only allowed
to exchange their individual momenta and flavors, see figure 4. In other words, scattering is
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elastic. Finally, an infinite tower of conservation laws implies that the multi-particle S-matrix
factorizes into the product of two-particle ones.

In this section we recall the basic concepts of factorized scattering theory. First,
we describe the Hilbert space of the asymptotic states as a representation carrier of the
Zamolodchikov–Faddeev (ZF) algebra; the latter is a deformed algebra of creation and
annihilation operators with defining relations given by the scattering matrix. Second, we
derive the constraints imposed by symmetries of the Hamiltonian on the scattering matrix.
Finally, we show that the physicality requirements on the S-matrix coincide with those which
follow from the compatibility of the ZF algebra relations.

3.1.1. Zamolodchikov–Faddeev algebra. Let J be the symmetry algebra of our quantum
integrable model which leaves the vacuum state |�〉 invariant. Introduce a creation operator
A

†
i (p) which creates a multiplet V of particles out of the vacuum with momentum p

transforming in a linear irreducible representation of J . Here index i labels various states in
this multiplet (the flavor index). The Hermitian conjugate Ai(p) is the vacuum annihilation
operator

Ai(p)|�〉 = 0.

States in the multiplet may have different statistics and, for this reason, it is convenient to
define parity εi , the latter being equal to zero or one depending on whether the value of i
corresponds to a bosonic or fermionic state, respectively.

To describe the scattering process, we introduce the in-basis and the out-basis of
asymptotic states as

|p1, p2, . . . , pn〉(in)i1,...,in
= A†

i1
(p1) · · ·A†

in
(pn)|�〉, p1 > p2 > · · · > pn,

|p1, p2, . . . , pn〉(out)i1,...,in
= (−1)

∑
k<l εik εil A

†
in
(pn) · · ·A†

i1
(p1)|�〉, p1 > p2 > · · · > pn.

The in and out states are the eigenstates of the Hamiltonian H of the model and the ordering
of momenta is essential. The operators A†(p) should not be confused with the fields
a†in/out(p), a†(p) introduced in section 2.3. In terms of the Heisenberg creation operators
the in and out states read as

|p1, p2, . . . , pn〉(in)i1,...,in
= a†ini1 (p1) · · · a†inin (pn)|�〉,

|p1, p2, . . . , pn〉(out)i1,...,in
= a†out

i1
(p1) · · · a†out

in
(pn)|�〉,

where the ordering of particle momenta is the same as in the formulae above.
The operators A†

i and Ai are known as the ZF creation and annihilation operators,
respectively. In contrast to a†i and ai , these operators do not satisfy the canonical commutation
relations in interacting theory. In the free field limit the ZF operators turn into a†i and ai ,
which explains an extra statistics-carrying factor (−1)

∑
k<l εik εil in the above formula for the

out-states.
In our new description of asymptotic states, scattering is understood as reordering of

particles (creation operators) in the momentum space. Particles can be distinguishable, each
of them carrying a definite flavor (the value of index i). Then, in the two-body collision process
particles can either keep their individual momenta, which is forward scattering (transition),
or exchange the latter (in the case of equal mass), which is backward scattering (reflection),
see figure 5. Note that the very possibility of describing the asymptotic states and their
scattering in such a fashion is due to S-matrix factorization, as it will become apparent in a
moment.
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Figure 5. In the collision process particles either keep (transition) or exchange (reflection) their
momenta. The S-matrix operates non-trivially in the flavor space.

According to the discussion in the previous section, the in and out states are related by
the unitary S-matrix operator S:

|p1, . . . , pn〉(in)i1,...,in
= S · |p1, . . . , pn〉(out)i1,...,in

, (3.1)

and one can expand initial states on a basis of final states and vice versa. In particular, the
two-particle in and out states are related by equation (2.85), which now takes the form

A
†
i (p1)A

†
j (p2)|�〉 = S · (−1)εiεj A†

j (p2)A
†
i (p1)|�〉 = Sklij (p1, p2)(−1)εkεlA†

l (p2)A
†
k(p1)|�〉.

This formula suggests to define the new matrix elements as

Sklij (p1, p2) ≡ Sklij (p1, p2)(−1)εkεl . (3.2)

Now, by discarding the vacuum state on both sides of the formula just above equation (3.2),
we obtain the following algebra of creation operators:

A
†
i (p1)A

†
j (p2) = A†

l (p2)A
†
k(p1)S

kl
ij (p1, p2), (3.3)

which is usually referred to as the ZF algebra.
Before stating the consistency conditions of these algebra relations, it is convenient to

rewrite (3.3) in the matrix form. To this end, we introduce rows Ei and columns Ei with
all vanishing entries except the one in the ith position which is equal to the identity. The
standard matrix unities are then Eji = Ei ⊗ Ej with the only non-vanishing element equal to
the identity which occurs on the intersection of the ith row with the j th column. The following
multiplication rules are valid EkEji = δki Ej and Eji Ek = δjkEi together with the product rule
for the matrix unities: Eji E

l
k = δ

j

kE
l
i . With this notation at hand we can represent the ZF

creation and annihilation operators as rows and columns, respectively,

A† = A†
iE

i, A = AiEi, (3.4)

while the entities (3.2) can be combined in the following matrix:

S(p1, p2) = Sklij (p1, p2)E
i
k ⊗ Ejl (3.5)

which is an element in End(V ⊗ V ). Thus, in the matrix notation the relations (3.3) acquire
the form

A
†
1(p1)A

†
2(p2) = A

†
2(p2)A

†
1(p1)S12(p1, p2), (3.6)

where S12 ≡ S, and we use the following convention:

A
†
1A

†
2 = A†

i (p1)A
†
j (p2)E

i ⊗ Ej , A
†
2A

†
1 = A†

j (p2)A
†
i (p1)E

i ⊗ Ej .
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In what follows, if A,B,C are either columns or rows with operator entries then in the
notation A1B2C3 the subscripts 1, 2, 3 refer to the location of the columns and rows, e.g. if
A = Ai(p3)Ei, B = Bi(p1)E

i, C = Ci(p2)E
i , then A1B3C2 = Ai(p3)Bk(p1)Cj (p2)Ei ⊗

Ej ⊗ Ek .
This formula can be naturally supplemented by similar relations between two annihilation

operators and between creation and annihilation operators, so that the complete algebra
relations look like

A
†
1A

†
2 = A

†
2A

†
1S12, A1A2 = S12A2A1, A1A

†
2 = A

†
2S21A1 + δ12. (3.7)

Here S21 = Sklij (p2, p1)E
j

l ⊗ Eik , and δ12 = δ(p1 − p2)Ei ⊗ Ei , where summation over
repeated indices is assumed. In what follows we will need the following three matrices known
as the permutation matrix P, the graded permutation P g and the graded identity 11g:

P = Eji ⊗ Eij , P g = (−1)εiεj Eji ⊗ Eij , 11g = (−1)εiεj Eii ⊗ Ejj . (3.8)

The permutation matrix transforms S12 into S21: PS12(p, p
′) = S21(p, p

′)P .
As we have already mentioned above, in the absence of interactionsA†

i andAi become the
usual bosonic (commuting) or fermionic (anti-commuting) creation and annihilation operators.
Then, the ZF algebra relations imply that in the free field limit the S-matrix should turn into
the graded unit matrix, i.e. into the diagonal matrix with entries ±1 depending on the statistics
of the corresponding creation operator. From this point of view the relations (3.7) can be
understood as a quantization (deformation) of the free oscillator algebra.

Yang–Baxter equation. In the free theory the creation operators either commute or anti-
commute and, therefore, any operator monomial can be ordered in a unique way, e.g., by
rearranging operators according to the momentum ordering p1 > p2 > · · · > pn. It is
natural to require that this property of having a unique basis of the lexicographically ordered
monomials holds for the interacting case as well. In the algebraic language this is known
as the Poincaré–Birkhoff–Witt property. Starting from any monomial constructed from the
operators A†

i (p), we should be able to bring it to an ordered form in a unique way by using the
defining relations (3.6) only. Consider, for instance, the product A

†
1A

†
2A

†
3, where the subscript

also reflects the momentum dependence. Obviously, by using the ZF algebra relations, this
monomial can be brought to the form A

†
3A

†
2A

†
1 in two different ways21

A
†
1A

†
2A

†
3 = A

†
3A

†
2A

†
1S12S13S23,

A
†
1A

†
2A

†
3 = A

†
3A

†
2A

†
1S23S13S12.

If we require these two results to coincide without imposing new (cubic) relations between ZF
operators, then the corresponding S-matrix must obey the following equation:

S23(p2, p3)S13(p1, p3)S12(p1, p2) = S12(p1, p2)S13(p1, p3)S23(p2, p3). (3.9)

This is the Yang–Baxter equation—the fundamental equation of the factorized scattering
theory.

One can show that no further constraints on the scattering matrix arise from the ordering
of higher than cubic monomials provided the Yang–Baxter equation is satisfied. It is important
to recognize that both the left- and right-hand side of this equation represent the three-particle
scattering matrix, and the equation itself is nothing else but the factorizability condition for
this S-matrix, see figure 6. Thus, the description of scattering states in terms of ZF operators
with a unique basis of ordered monomials is only possible if the corresponding theory exhibits
a factorizable S-matrix.
21 Here Sab denotes the standard embedding of the matrix S(p, p′) into the tensor product of three spaces, e.g.
S13(p, p

′) = Sklij (p, p′)Eik ⊗ 11 ⊗ Ejl . Note, that in general the momenta p, p′ are not attached to the indices a, b.

83



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

12

23S13S12

S
S13

S S13S12 23

S13

t
p

3
p

2

p
1

p
2

p
1

p3

S12

23

p
3

p p
21

p1

p3

p
2

S23

S

S

Figure 6. Factorization of the three-particle S-matrix. The result of the three-particle scattering
process does not depend on the order in which two-particle scattering events take place.

Unitarity condition. In addition to the Yang–Baxter equation, consistency of the ZF algebra
relations imposes further requirements on the S-matrix.

In particular, if we flip p1 ↔ p2 in the ZF algebra relation (3.6) and then pull the
permutation matrix P through its left- and right-hand sides, we get

A2(p2)A1(p1) = A1(p1)A2(p2)S21(p2, p1)

= A2(p2)A1(p1)S12(p1, p2)S21(p2, p1),

where the last term was obtained by applying the ZF relation again. Thus, the S-matrix must
satisfy the following property:

S12(p1, p2)S21(p2, p1) = 11 (3.10)

known as the unitarity condition.

Conservation laws. The fulfilment of the unitarity condition (3.10) leads to the existence in
the ZF algebra of a large Abelian subalgebra. Assuming for simplicity the same dispersion
relation for all the particles, this subalgebra is generated by the operators

Iq =
∫

dpq(p)A†
i (p)A

i(p), (3.11)

where q(p) is an arbitrary function of particle momentum. Indeed, applying the ZF algebra
relations twice, we get

A
†
i (u)A

i(u)A
†
j (p) = A†

i (u)
[
A

†
k(p)A

l(u)Skij l (p, u) + δji δ(u− p)]
= A†

n(p)A
†
m(u)A

l(u)Smnik (u, p)S
ki
j l (p, u) + A†

j (p)δ(u− p).
In components the unitarity relation (3.10) takes the form Smnik (u, p)S

ki
j l (p, u) = δnj δ

m
l , and,

therefore

IqA
†
i (p) = A†

i (p)(q(p) + Iq), IqA
i(p) = Ai(p)(−q(p) + Iq).

Thus, we conclude that Iq for various q’s do commute. Furthermore, the formulae above
imply the additivity property of the commuting integrals

IqA
†
i1
(p1) · · ·A†

in
(pn)|�〉 =

(
n∑
k=1

q(pik )

)
A

†
i1
(p1) · · ·A†

in
(pn)|�〉.

In particular, as a result, we get that the Hamiltonian H, the momentum operator P and the
number operator N are given by

H =
∫

dpω(p)A†
i (p)A

i(p),P =
∫

dppA†
i (p)A

i(p),N =
∫

dpA†
i (p)A

i(p),
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where ω(p) is the dispersion relation which was assumed to be the same for all particles from
the multiplet V .

If particles have different dispersion relations the construction of the conservation laws
admits a straightforward generalization to be discussed in due course.

Scattering and statistics. Consider an operator (−1)NF , where we have introduced the
following operator:

NF =
∫

dpεiA
†
i (p)A

i(p). (3.12)

Since ε = 0 for bosons and ε = 1 for fermions, NF is the fermion number operator. The
operator (−1)NF preserves the vacuum state (−1)NF |�〉 = |�〉 and it defines statistics of a
multi-particle state

(−1)NF · A†
i1
(p1) · · ·A†

in
(pn)|�〉 = (−1)

∑n
k=1 εik A

†
i1
(p1) · · ·A†

in
(pn)|�〉.

Since statistics of a multi-particle state cannot change under scattering, (−1)NF must commute
with the S-matrix operator S. Pulling (−1)NF through the left- and the right-hand sides of the
ZF relation (3.3), we get

(−1)εi+εj A†
i (p1)A

†
j (p2) = (−1)εk+εl Sklij (p1, p2)A

†
l (p2)A

†
k(p1).

The last equation leads to the following non-trivial condition for the S-matrix elements:

Sklij (p1, p2) = (−1)εi+εj+εk+εl Sklij (p1, p2). (3.13)

Obviously, this condition implies that for any non-vanishing Sklij (p1, p2) the sum εi +εj +εk+εl
is an even number: 0, 2 or 4. It is convenient to define the grading matrix �

� = (−1)εiEii . (3.14)

Then for the matrix (3.5) relation (no) can be cast in the form

[S(p1, p2),� ⊗�] = 0. (3.15)

Thus, in the matrix language compatibility of scattering with statistics is equivalent to
commutativity of S(p1, p2) with the matrix � ⊗�. It is worth pointing out that the operator
NF does not commute with the Hamiltonian and, for this reason, the fermion number is not a
conserved quantity, only (−1)NF is conserved.

Graded S-matrix. It is of interest to consider the following matrix:

Sg(p1, p2) = Sklij (p1, p2)E
i
k ⊗ Ejl = Sklij (p1, p2)(−1)εkεlEik ⊗ Ejl .

By using the graded identity matrix (3.8), the last formula can be written as

Sg(p1, p2) = 11gS(p1, p2), (3.16)

where S(p1, p2) is the matrix (3.5). The matrix Sg encodes the matrix elements of the S-matrix
operator S, but, contrary to S, it does not satisfy the Yang–Baxter equation (3.9). In what
follows we will refer to Sg as the graded S-matrix, because it satisfies another version of (3.9)
known as the graded Yang–Baxter equation.

To derive the equation, we substitute in equation (3.9) the matrix S expressed via Sg

11g23S
g

2311g13S
g

1311g12S
g

12 = 11g12S
g

1211g13S
g

1311g23S
g

23.
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Here Sgij denotes the usual embedding of the matrix Sg into the product of three spaces. Now
we note that both S and Sg obey the following identities:

11g1211g23S13 = S1311g1211g23, 11g1211g13S23 = S2311g1311g12,
(3.17)

11g1211g23S
g

13 = Sg1311g1211g23, 11g1211g13S
g

23 = Sg2311g1311g12

which all follow from equation (3.13). Using these relations, equation (3.17) can be cast in
the form

11g1211g13S
g

2311g1311g12︸ ︷︷ ︸
Š23

11g23S
g

1311g23︸ ︷︷ ︸
Š13

S
g

12︸︷︷︸
Š12

= S
g

12︸︷︷︸
Š12

11g23S
g

1311g23︸ ︷︷ ︸
Š13

11g1211g13S
g

2311g1311g12︸ ︷︷ ︸
Š23

.

We see that if we define the graded embedding of Sg into the vector product of three spaces as

Š12 = Sg12, Š13 = 11g23S
g

1311g23, Š23 = 11g1211g13S
g

2311g1311g12 = Sg23,

we obtain the graded Yang–Baxter equation

Š23Š13Š12 = Š12Š13Š23, (3.18)

which looks the same as equation (3.9). Sometimes the matrix Š is referred to as the graded
fermionic S-operator.

3.1.2. S-matrix and its symmetries. Now we are in position to show that the existence of a
symmetry algebra of the Hamiltonian implies certain restrictions on the S-matrix.

Denote by Ja the operators which generate the symmetry algebra J

[Ja,H] = 0, a = 1, . . . , dimJ .

In addition to H, the symmetry generators commute with P and N, and with all the higher
conserved charges Iq . The latter act diagonally in the basis of multi-particle states.

The Hilbert space created by the ZF operators carries a linear representation of J , and
since the operators Ja commute with N and all the higher charges they must preserve the
number of particles and the set of their momenta

Ja · |�〉 = 0,

Ja · A†
i (p)|�〉 = J aj

i (p)A
†
j (p)|�〉, (3.19)

Ja · A†
i (p1)A

†
j (p2)|�〉 = J akl

ij (p1, p2)A
†
k(p1)A

†
l (p2)|�〉,

. . . .

Here the tensors J aj
i , J

akl
ij , . . ., can be thought of as the structure constants of the symmetry

algebra in one-particle, two-particle, etc representations. In general these structure constants
might depend on the particle momenta. Since J is a superalgebra, the generator (−1)NF

introduced in the previous section commutes with all the bosonic algebra generators and
anti-commutes with the fermionic ones

(−1)NF · Ja = (−1)εaJa · (−1)NF , (3.20)

where εa is the degree of Ja. This leads to the selection rules for the corresponding structure
constants

J aj
i (p) = (−1)εa+εi+εj J aj

i (p),

J akl
ij (p1, p2) = (−1)εa+εi+εj+εk+εl J akl

ij (p1, p2), (3.21)

. . . .
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The crucial point is that the non-Abelian symmetry algebra J acting on the spectrum of
the Hamiltonian implies a non-trivial constraint on the scattering matrix. This constraint can
be derived by acting with symmetry generators Ja on the ZF algebra relations

Ja · A†
i (p1)A

†
j (p2)|�〉 = Sklij (p1, p2)J

a · A†
l (p2)A

†
k(p1)|�〉. (3.22)

Recalling formulae (3.19), one finds that the S-matrix elements must satisfy the following
invariance condition:

Smnkl (p1, p2)J
akl
ij (p1, p2) = J anm

lk (p2, p1)S
kl
ij (p1, p2). (3.23)

If we combine the symmetry generator structure constants in a matrix

J a
12(p1, p2) ≡ J akl

ij (p1, p2)E
i
k ⊗ Ejl , (3.24)

then the invariance condition can be written as

S12(p1, p2)J
a
12(p1, p2) = J a

21(p2, p1)S12(p1, p2). (3.25)

The form of the multi-particle structure constants is determined by the symmetry algebra
of a particular model. In trivial cases, J is a simple Lie superalgebra with (momentum-
independent) structure constants in the one-particle representation

[[J a, J b]] = tabcJ c,

where [[., .]] stands for the graded commutator

[[J a, J b]] = J aJ b − (−1)εaεbJ bJ a.

In this case the two-particle states can be identified with the tensor product of two one-particle
states and the two-particle symmetry generators are given by22

J a
12 = J a ⊗ 11 + 11g(11 ⊗ J a)11g. (3.26)

Since we work with the usual (not graded) tensor product, the second term in the right-hand
side of equation (3.26) involves the graded identity which is needed for a proper account of
the statistics23. Indeed, one can easily check that equation (3.26) defines a representation of
J in the tensor product V ⊗ V . Thus, for models with momentum-independent one-particle
structure constants the invariance condition for the S-matrix reduces to the familiar matrix
equations

(J a ⊗ 11 + 11 ⊗ J a)S12 = S12(J
a ⊗ 11 + 11 ⊗ J a) for J a bosonic,

(J a ⊗ 11 +� ⊗ J a)S12 = S12(11 ⊗ J a + J a ⊗�) for J a fermionic,

where the grading matrix � is defined in equation (3.14) and we specified formula (3.26) for
the cases of bosonic and fermionic algebra generators. The symmetry algebra of the light-cone
string sigma model is not of this simple type, however, and in our subsequent analysis we have
to resort to the invariance condition (3.25).

Returning to the general situation, we assume that J has a non-trivial center. Then,
any representation of J is parametrized by the particle momentum and by the corresponding
values of the Lie algebra central elements (charges)24. Let J a(p; c) be the generators of
J in some representation V , where c denotes a level set of the central elements. The
generators J a(p; c) should be thought of as matrices depending on the parameters p and c
but acting in the same carrier space V . The matrix C representing a central charge C ∈ J

22 It is worth mentioning that equation (3.26) implies that the action of symmetry generators on two-particle states in
equation (3.19) satisfies the Leibnitz rule. In general, however, this is not the case.
23 In components, this formula reads as J akl

ij (p1, p2) = J ak
i (p1)δ

l
j + (−1)εi εaδki J

al
j (p2).

24 The momentum P commutes with all Ja, and therefore is central. We prefer, however, to separate P from other
central charges due to its special role.
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is C = c11. Representations corresponding to various sets of p, c are inequivalent, because a
transformation J a(p; c)→ gJ a(p; c)g−1 cannot change the value of the central charges.

Obviously, if we wish to identify V with a one-particle representation in the Fock space,
we have to prescribe for c some fixed value (e.g., zero), as the one-particle representation is
characterized by the particle momentum only and it does not involve any other continuous
parameters. The structure constants in the two-particle representation can be then defined in
a way similar to equation (3.26)

J a
12(p1, p2) = J a(p1; c1)⊗ 11 + 11g(11 ⊗ J a(p2; c2))11

g. (3.27)

For a consistent interpretation of equation (3.27) as the two-particle representation, the level
sets of the first and second one-particle representations should depend on the particle momenta
p1, p2. In particular, a non-trivial situation arises when this dependence is mutually non-
local—c1 is determined by p2 and c2 by p1, respectively. Plugging in equation (3.26) the
matrix representatives of C, we get

C12 = c111 ⊗ 11 + 11g(11 ⊗ c211)11g = (c1 + c2)11 ⊗ 11. (3.28)

Of course, this formula reflects a general fact that the value of a central charge in a tensor
product representation is given by the sum of the values corresponding to the individual
components of this tensor product.

As was established in subsection 2.4.2, the symmetry algebra of the light-cone sigma
model has the three-dimensional center, which, in addition to H, contains the operator C and
its Hermitian conjugate C†; both of them are (nonlinear) functions of the momentum operator P.
Thus, the corresponding representation theory arising in the Fock space should fit our general
treatment above. Indeed, as we will show in the forthcoming sections, the simultaneous
additivity of C(P) and P will require a realization of the two-particle representation in the
form (3.27) with non-trivial functions c1(p2) and c2(p1).

3.1.3. General physical requirements. In a physical theory the S-matrix must satisfy a
number of additional requirements reflecting analytic properties and discrete symmetries of
the corresponding Hamiltonian. In this section we show that some of these requirements can
be naturally derived by using the ZF algebra framework. We start our discussion with the
condition of physical unitarity.

Physical unitarity. Since the Hamiltonian is Hermitian, the associated S-matrix operator S is
unitary. To find the implications of this unitarity for the two-particle S-matrix S(p1, p2), we
can use the fact that the annihilation operators are Hermitian conjugate of the creation ones.
Taking the Hermitian conjugation of the first line in equation (3.7), we get

A2(p2)A1(p1) = S†12(p1, p2)A1(p1)A2(p2).

Changing p1 ↔ p2 and pulling the permutation P12 through the left- and the right-hand side
of the last formula, we obtain

A1(p1)A2(p2) = S†21(p2, p1)A2(p2)A1(p1).

This expression must coincide with the second line in equation (3.7) implying the relation
S
†
21(p2, p1) = S12(p1, p2). Using the unitarity condition (3.10), this relation can be written as

S†(p1, p2)S(p1, p2) = 11 (3.29)

meaning that S(p1, p2) is a unitary matrix. This is the condition of physical unitarity.
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Parity invariance. As was established in subsection 1.2.2 the Lagrangian of the world-sheet
sigma model is invariant with respect to the parity transformation P . This transformation acts
as σ → −σ with simultaneous multiplication of fermions by i. Obviously, in the momentum
space the map σ → −σ corresponds to p → −p. Therefore, on one-particle states the action
of P can be naturally defined as

P · A†
i (p)|�〉 = (−1)

1
2 εiA

†
i (−p)|�〉. (3.30)

Here ηP = (−1)
1
2 εi is intrinsic parity of the particle created by A†

i . For a fermion P2 = −1
which reflects the double valuedness of the spinor representation under a rotation over an angle
2π . On multi-particle states we then have

P · |p1, p2, . . . , pn〉(in)i1,...,in
= (−1)

1
2

∑
k εik | − p1,−p2, . . . ,−pn〉(in)i1,...,in

.

Using the representation of in states in terms of the ZF operators, we can write

P · A†
i1
(p1) · · ·A†

in
(pn)|�〉 = (−1)

1
2

∑
k εik (−1)

∑
k<l εik εil A

†
in
(−pn) · · ·A†

i1
(−p1)|�〉,

where an extra statistical factor (−1)
∑
k<l εik εil arises due to the operator reordering. Now

letting P act on both sides of the ZF algebra

P · A†
i (p1)A

†
j (p2) = P · A†

l (p2)A
†
k(p1)S

kl
ij (p1, p2), (3.31)

and pulling P through, we obtain

(−1)
1
2 (εi+εj )+εiεj A

†
j (−p2)A

†
i (−p1) = (−1)

1
2 (εk+εl )+εkεlA

†
k(−p1)A

†
l (−p2)S

kl
ij (p1, p2)

= (−1)
1
2 (εk+εl )+εkεlA†

n(−p2)A
†
m(−p1)S

mn
kl (−p1,−p2)S

kl
ij (p1, p2),

From here we conclude that the matrix S must obey the following condition:

Smnkl (−p1,−p2)S
kl
ij (p1, p2)(−1)−εiεj+εkεl+ 1

2 (εk+εl−εi−εj ) = δmi δnj . (3.32)

Since the sum εk + εl + εi + εj is an even number and ε2
i = εi , we have

−εiεj + εkεl + 1
2 (εk + εl − εi − εj ) = 1

2 [(εk + εl)
2 − (εi + εj )

2]

= 1
2 (εk + εl − εi − εj )︸ ︷︷ ︸

even

(εk + εl + εi + εj )︸ ︷︷ ︸
even

,

i.e. the left-hand side of the last expression is also an even number and, therefore, equation
(3.32) reduces to

S(−p1,−p2) = S−1(p1, p2). (3.33)

This is the parity transformation rule for the S-matrix.

Time reversal. In quantum field theory the time reversal operation T : τ → −τ is realized
by means of an anti-linear, anti-unitary operator Uτ

Uτc| 〉 = c̄Uτ | 〉, 〈�| 〉 = 〈Uτ |Uτ�〉.
To understand the implications of the symmetry under time reversal, it is convenient to start
with the free field representation in terms of creation and annihilation operators as discussed
in section 2.2.4. On free fields Y aȧ, Zαα̇, θaα̇ and ηαȧ the action of the anti-linear operator Uτ
can be defined as follows:

UτY
aȧ(σ, τ )U−1

τ = ητY aȧ(σ,−τ), UτZ
αα̇(σ, τ )U−1

τ = ητZαα̇(σ,−τ),
Uτ θ

aα̇(σ, τ )U−1
τ = ητ θaα̇(σ,−τ), Uτη

αȧ(σ, τ )U−1
τ = ητηαȧ(σ,−τ),
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where ητ is intrinsic time parity which depends on the type of a field. It is easy to see that
for our string model it is consistent to choose ητ = 1 for all the fields, so that the Lagrangian
density (2.61) will transform under time reversal as

UτL2(σ, τ )U
−1
τ = L2(σ,−τ)

leaving, therefore, the corresponding Lagrangian invariant. The action of time reversal on
creation and annihilation operators is easy to derive by recalling the mode expansion of the
corresponding fields, e.g.,

Y aȧ(σ, τ ) = 1

2
√

2π

∫
dp√
ωp

(
eipσ−iωpτ aaȧ(p) + e−ipσ+iωpτ εabεȧḃa

†
bḃ
(p)
)

θaα̇(σ, τ ) = e−iπ/4

√
2π

∫
dp√
ωp

(
eipσ−iωpτ fpa

aα̇(p) + e−ipσ+iωpτhpε
abεα̇β̇a

†
bβ̇
(p)
)

and similarly for Zαα̇ and ηαȧ . Applying Uτ to these expressions, we get

UτY
aȧ(σ, τ )U−1

τ = 1

2
√

2π

×
∫

dp√
ωp

(
e−ipσ+iωpτUτa

aȧ(p)U−1
τ + eipσ−iωpτ εabεȧḃUτ a

†
bḃ
(p)U−1

τ

)
= Y aȧ(σ,−τ)

and

Uτθ
aα̇(σ, τ )U−1

τ = eiπ/4

√
2π

∫
dp√
ωp

(
e−ipσ+iωpτ fpUτa

aα̇(p)U−1
τ

+ eipσ−iωpτhpε
abεα̇β̇Uτ a

†
bβ̇
(p)U−1

τ

) = θaα̇(σ,−τ).
From here we deduce the transformation law for creation and annihilation operators

Uτa
aȧ(p)U−1

τ = aaȧ(−p), Uτa
†
bḃ
(p)U−1

τ = a†
bḃ
(−p),

Uτa
aα̇(p)U−1

τ = −iaaα̇(−p), Uτa
†
bβ̇
(p)U−1

τ = ia†
bβ̇
(−p). (3.34)

It is interesting to note that in classical theory and before gauge fixing, time reversal can be
defined in a way similar to parity reversal, namely, τ → −τ with simultaneous multiplication
of fermions θ and η by i and − i, respectively. We see that in the gauge-fixed quantum theory,
with the well-defined Hamiltonian and the canonical structure, these are fermionic creation
and annihilation operators that under time reversal are multiplied by i or −i, rather then θ and
η.

Formulae (3.34) derived for free theory suggest how to define the time reversal operation
T in interacting theory. On a one-particle state created by a ZF operator we define an action
of T as

T · A†
i (p)|�〉 = iεiA†

i (−p)|�〉. (3.35)

Since T maps τ → −τ , it interchanges asymptotic past and future and, for this reason, its
action on multi-particle states is given by

T · |p1, p2, . . . , pn〉(in)i1,...,in
= (−1)

1
2

∑
k εik | − p1,−p2, . . . ,−pn〉(out)i1,...,in

.

Representing in and out states in terms of the ZF operators, the last formula can be written as

T · A†
i1
(p1) · · ·A†

in
(pn)|�〉 = (−1)

1
2

∑
k εik A

†
i1
(−p1) · · ·A†

in
(−pn)|�〉.
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Commuting T through both sides of the ZF algebra relations (3.3), one gets

(−1)
1
2 (εi+εj )A

†
i (−p1)A

†
j (−p2) = (−1)

1
2 (εk+εl )A

†
l (−p2)A

†
k(−p1)S

∗kl
ij (p1, p2),

where S∗kl
ij stands for the complex conjugate of the S-matrix element Sklij , and we have taken

into account that T is an anti-unitary operator. Permuting the ZF operators in the right-hand
side of the last relation, one obtains

(−1)
1
2 (εi+εj )A

†
i (−p1)A

†
j (−p2) = (−1)

1
2 (εk+εl )A†

n(−p1)A
†
m(−p2)S

mn
lk (−p1,−p2)S

∗kl
ij (p1, p2).

Thus, invariance of the theory under time reversal leads to the following equation for the
matrix elements of the S-matrix:

S∗kl
ij (p1, p2)S

mn
lk (−p1,−p2)(−1)

1
2 (εk+εl−εi−εj ) = δni δmj . (3.36)

According to our discussion of the parity transform,

(−1)εiεj+εkεl = (−1)
1
2 (εk+εl−εi−εj ).

Therefore, in the matrix form equation (3.36) reads as

11gS∗
12(p1, p2)11

gS21(−p2,−p1) = 11. (3.37)

This is the condition on the two-particle S-matrix implied by the time reversal invariance.
Unitarity condition (3.10) in conjunction with parity invariance (3.33) and physical

unitarity (3.29) allows one to rewrite the last formula in the following form:

St (p1, p2) = 11gS(p1, p2)11
g, (3.38)

that can be viewed as the consequence of the combined parity and time reversal invariance.

Charge conjugation. As before, we assume that particles (one-particle asymptotic states)
transform in some representation V of the symmetry algebra J . Let B be the bosonic
subalgebra of J . If a theory is invariant under charge conjugation then there are two
possibilities—either a representation of B in V is reducible and consists of two representations
conjugate to each other or it is self-conjugate.

In the first case we have V = W ⊕ W ∗, where the first and the second components
correspond to particles and anti-particles, respectively25. If D is a matrix realization of the
group corresponding to B which acts in the space W , then anti-particles transform in the
conjugate representations W ∗ with the matrix realization D∗. Note that for unitary groups
the conjugate representation coincides with the contragradient representation: (D t )−1 = D∗.
Charge conjugation is understood as a transfer

C : W → W ∗.

In general, C belongs to the group of outer automorphisms of B.
In the second case, the representation V is self-conjugate which means that V ∗ is

equivalent to V . For instance, if the bosonic subalgebra of J is su(2), then

D∗ = CDC−1,

where, according to equation (1.134), C = ε is an internal automorphism. Obviously, under
these circumstances, invariance under charge conjugation does not lead to any new restrictions
on the form of the two-particle S-matrix beyond those implied by J . This is precisely the
situation we encounter for the string sigma model.

25 The reader might have in mind, for instance, quarks and anti-quarks which transform in fundamental and anti-
fundamental irreps of SU(3).
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Figure 7. Physical strip on the rapidity plane of a two-dimensional relativistic field theory.

Crossing symmetry. So far we were considering the obvious kinematical symmetries of the
Hamiltonian. Now we introduce a new type of dynamical symmetry which manifests itself in
the scattering process as a possibility of replacing a particle with its anti-particle. In relativistic
theories this kind of symmetry is known as crossing.

Recall that in two-dimensional Lorentz-invariant models the particle momentum p and
the energy H can be parametrized by a single rapidity variable θ

p = sinh θ, H = cosh θ, (3.39)

which provides a solution to the relativistic dispersion relation

H 2 − p2 = 1, (3.40)

where for simplicity we assumed a particle of unit mass. Invariance under Lorentz
transformations requires the two-particle S-matrix to depend on the difference of the particle
rapidities: S(p1, p2) = S(θ1 − θ2).

To describe all states in a theory, including bound states, the rapidity variable should be
continued to the complex plane. The already mentioned crossing symmetry transformation
corresponds to the shift θ → θ + iπ , because the momentum and energy change a sign

θ → θ + iπ : p → −p, H → −H,
which signifies a transition to the corresponding anti-particle. The difference θ = θ1 − θ2

takes value in the strip 0 � Im θ < π and −∞ < Re θ < ∞, which is called the physical
strip of a relativistic field theory, see figure 7.

Crossing symmetry leads to further constraints on the scattering matrix. Although the
string sigma model does not have Lorentz invariance on the world-sheet, as we will show, the
corresponding scattering theory is compatible with the assumption of crossing.

We will reserve a detailed discussion of crossing symmetry for subsection 3.4.2. Here our
goal will be to demonstrate that the crossing symmetry requirement for the S-matrix naturally
follows from an additional invariance condition of the ZF algebra.

This invariance condition is related to the possibility of exchanging in the ZF relations
creation and annihilation operators corresponding to one of the two particles. More precisely,
we define the following transformation:

A†(p)→ B†(p) = At (−p)C , A(p)→ B(p) = C †A†t (−p), (3.41)

where C is a constant matrix and superscript t means transposition. We require that under this
map the ZF algebra relations (3.7) for p1 
= p2 transform into themselves. More precisely,
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if we first replace in the algebra relations A by B for one of the particles, and further use
formulae (3.41) to express B via A, we should recover for A the same relations. Under the
assumption p1 > p2 the delta-function does not contribute which makes it possible to map
by means of equation (3.41) the exchange relations of A(p1) and A(p2) to that of A(p1) and
A†(p2).

Note that flipping the sign of p under (3.41) is dictated by the compatibility of
equation (3.41) with the algebra relations

PA† = A†(P + p), PA = A(P − p),
i.e. the operators A† and B† are required to commute with P in the same way.

Application of the crossing symmetry transformation to the S-matrix requires a certain
care. Crossing symmetry does not only change the sign of p but it also changes a branch
of the dispersion relation sending H to −H . To correctly implement the action of crossing
symmetry, the S-matrix could be treated as a function of both the particle momenta and the
particle energies: S(p1,H1;p2,H2). Of course, on any given branch the S-matrix becomes a
function of particle momenta only. Even then the S-matrix is not a meromorphic function of
pi and Hi , and one still should specify additional cuts in the pH -planes and choose a proper
branch. Crossing, e.g. the first particle then invokes the following transformation:

S(p1,H1;p2,H2)→ Sc1(−p1,−H1;p2,H2),

and applying it twice one does not end up with the original S-matrix: (Sc1)c1 
= S.
Although below we will not specify explicitly the branch dependence of the S-matrix,

it is precisely in this sense we understand the action of crossing on S. Clearly, finding an
analog of the rapidity variable which uniformizes a given dispersion relation and makes the
S-matrix a meromorphic function would greatly simplify the treatment of crossing symmetry
as it resolves the ambiguities of S related to the choice of a branch. For the string sigma
model at hand, such a uniformization rendering the crossing symmetric world-sheet S-
matrix a meromorphic function is unknown. We will return to this important issue in
subsection 3.2.4.

Meanwhile, we find that invariance of the ZF algebra under map (3.41) implies the
following equations:

C −1
1 S

t1
12(p1, p2)C1S12(−p1, p2) = 11,

(3.42)
C −1

2 S
t2
21(p2, p1)C2S21(−p2, p1) = 11.

Here t1 and t2 mean the transposition in the first and second space, respectively, C1 =
C ⊗ 11,C2 = 11 ⊗ C . In fact, these two equations are equivalent: the first turns into the
second after applying the permutation and exchanging p1 and p2. Provided C is known,
equations (3.42) represent a further non-trivial constraint on the S-matrix.

There is an alternative way to obtain equations (3.42). Without loss of generality we
assume that C †C = 11 and consider the following singlet (row × matrix × column):

I(p) = A†(−p)C −1A†t (p).

This operator commutes with P and, when applied to the vacuum, produces a state with zero
momentum. We require this operator to have trivial scattering with all operators A†

I1(p1)A
†
2(p2) = A

†
2(p2) I1(p1).
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This gives

A
†
1(−p1)C

−1
1 A

†t
1 (p1)︸ ︷︷ ︸

I1(p1)

A
†
2(p2) = A

†
1(−p1)C

−1
1

[
A

†
1(p1)A

†
2(p2)
]t1

= A
†
1(−p1)C

−1
1

[
A

†
2(p2)A

†
1(p1)S12(p1, p2)

]t1
= A

†
1(−p1)A

†
2(p2)C

−1
1 S

t1
12(p1, p2)A

†t1
1 (p1)

= A
†
2(p2)A

†
1(−p1)S12(−p1, p2)C

−1
1 S

t1
12(p1, p2)A

†t1
1 (p1)︸ ︷︷ ︸

I1(p1)

,

i.e. we must require

S12(−p1, p2)C
−1
1 S

t1
12(p1, p2) = C −1

1 ,

which is equivalent to equations (3.42). The concrete form of the matrix C will be found in
subsection 3.4.2.

Summary. We conclude this section by summarizing the basic physical requirements for the
scattering matrix:

• Generalized physical unitarity

S(p∗
1, p

∗
2)

† · S(p1, p2) = 11

• Parity invariance

S(−p1,−p2) = S−1(p1, p2).

• Time reversal invariance

S(p1, p2)
t = 11gS(p1, p2)11

g.

• Crossing symmetry

Sc1(p1, p2)S(−p1, p2) = 11, Sc2(p1, p2)S(p1,−p2) = 11.

Some comments are in order. For real values of momenta the S-matrix must be unitary.
If the momenta are complex, usual unitarity is replaced by the generalized unitarity condition
above, where p∗ stands for the complex conjugate momentum. The time reversal invariance
condition presented here assumes parity invariance and physical unitarity. Finally, the crossing
symmetry relates the anti-particle-to-particle scattering matrix Sc1 to that of particle-to-particle
and it holds for the properly normalized S only.

3.2. Fundamental representation of su(2|2)C
In this section we will describe the fundamental representation of the centrally extended
superalgebra su(2|2)C . For the reader’s convenience, we repeat the Lie algebra defining
relations (see, section 2.4.2 for notations)[

La
b, Jc
] = δbcJa − 1

2δ
b
aJc,

[
Rα

β, Jγ
] = δβγ Jα − 1

2δ
β
αJγ ,[

La
b, Jc
] = −δcaJb + 1

2δ
b
aJ
c,

[
Rα

β, Jγ
] = −δγα Jβ + 1

2δ
β
αJγ , (3.43){

Qα
a,Q

†
b
β
} = δabRαβ + δβαLb

a + 1
2δ
a
b δ
β
αH,{

Qα
a,Qβ

b
} = εαβεabC, {

Q†
a
α,Q

†
b
β
} = εabεαβC†.

In section 2.4.2 these relations have been derived by studying the Poisson bracket of the
Noether charges of the string sigma-model in the light-cone gauge. It was found there that
upon going off-shell the algebra su(2|2) receives the central extension by two central charges
C and C†. To make our treatment more general, we will for a moment assume that C and C†

are independent.
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3.2.1. Matrix realization. Introduce a basis of the four-dimensional fundamental
representation

|eM〉 =
{|ea〉
|eα〉.

Here εa = 0 for a = 1, 2 and εα = 1 for α = 3, 4. On these basis vectors the rotation
generators of (3.43) are realized as

La
b|ec〉 = δbc |ea〉 − 1

2δ
b
a |ec〉 Rα

β |ea〉 = 0
(3.44)

La
b|eα〉 = 0 Rα

β |eγ 〉 = δβγ |eα〉 − 1
2δ
β
α |eγ 〉.

The supersymmetry generators will then be represented as

Qα
a|eb〉 = aδba |eα〉 Q†

a
α|eb〉 = cεabεαβ |eβ〉

(3.45)
Qα

a|eβ〉 = bεαβεab|eb〉 Q†
a
α|eβ〉 = dδαβ |ea〉.

Here a, b, c, d are complex numbers parametrizing a fundamental irrep. One can check that
the algebra relations (3.43) are satisfied provided these numbers satisfy the following relation:

ad − bc = 1. (3.46)

The values of the central elements are found to be

H|eM〉 = (ad + bc)|eM〉, C|eM〉 = ab|eM〉, C†|eM〉 = cd|eM〉. (3.47)

In addition, if we require this representation to be unitary, then the parameters have to satisfy
the conditions

d∗ = a, c∗ = b.
In unitary representations, H is Hermitian and C is the Hermitian conjugate of C†.

It is convenient to combine the parameters describing the set of fundamental unitary
representations into the following matrix:

h =
(
a b

c d

)
.

Since this matrix obeys the relation h†ρh = ρ, where ρ = diag(1,−1) and it has unit
determinant, it can be thought of as an element of the three-dimensional SU(1, 1) group. Not
all the values of the central charges are allowed, however. Indeed, equations (3.46) and (3.47)
imply that

H 2 − 4CC̄ = 1. (3.48)

This is the so-called shortening condition which defines an atypical (short) multiplet of
su(2|2)C of dimension four. Thus, the space of central charges corresponding to atypical
four-dimensional multiplets is parametrized by one real variable, which is H, and by the phase
of C.

Any element of SU(1, 1) gives rise to the central charges H and C obeying equation (3.48).
On the other hand, given the charges (3.47) satisfying equation (3.48), the representation
parameters are not specified uniquely because a U(1) automorphism

h→
(
a eiϕ b e−iϕ

c eiϕ d e−iϕ

)
does not change the value of the charges and merely reflects a choice of basis. Factoring out
this U(1) subgroup, we obtain a two-sheeted hyperboloid SU(1, 1)/U(1)which is described by
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H>0

H<0

Poincare disc

Figure 8. Two branches of the dispersion relation corresponding toH > 0 andH < 0, respectively.
The Poincaré (blue) disk represents the stereographic projection of an upper sheet on the complex
plane through the origin.

equation (3.48). The upper sheetH > 0 corresponds to positive energy unitary representations,
while the lower sheet corresponds to anti-unitary representations, see figure 8.

Finally, for the reader’s convenience, we describe the representation (3.44), (3.45) in
terms of 4 × 4 matrix unities

L1
2 = E2

1 , R3
4 = E4

3 ,

L2
1 = E1

2 , R4
3 = E3

4 ,

L1
1 = 1

2

(
E1

1 − E2
2

) = −L2
2, R3

3 = 1
2

(
E3

3 − E4
4

) = −R4
4

(3.49)

and

Q1
3 = aE1

3 + bE4
2 , Q

†3
1 = cE2

4 + dE3
1 ,

Q1
4 = aE1

4 − bE3
2 , Q

†4
1 = −cE2

3 + dE4
1 ,

Q2
3 = aE2

3 − bE4
1 , Q

†3
2 = −cE1

4 + dE3
2 ,

Q2
4 = aE2

4 + bE3
1 , Q

†4
2 = cE1

3 + dE4
2 .

(3.50)

3.2.2. Outer automorphisms. Over the complex field, the superalgebra su(2|2)C admits a
group of outer automorphisms isomorphic to SL(2). This group acts on the supercharges in
the following way:

Q̃α
a = u1Qα

a − u2ε
acQ†

c
γ εγα, Q̃

†
a
α = v1Q

†
a
α − v2ε

αβQβ
bεba,

(3.51)
Qα

a = v1Q̃α
a + u2ε

acQ̃
†
c
γ εγα, Q†

a
α = u1Q̃

†
a
α + v2ε

αβQ̃β
bεba,

where the coefficients ui, vi satisfy the condition

u1v1 − u2v2 = 1, (3.52)
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which guarantees that Q̃ and Q̃
†

obey the same algebra relations (3.43) but with the new central
elements given by

H̃ = (u1v1 + u2v2)H + 2u1v2C + 2u2v1C
†,

C̃ = u2
1C + u2

2C
† + u1u2H, (3.53)

C̃
† = v2

1C† + v2
2C + v1v2H.

The transformation parameters ui, vi are combined into a complex 2 × 2-matrix(
u1 u2

v2 v1

)
,

which, due to equation (3.52), has unit determinant. This establishes an isomorphism of the
outer automorphism group to SL(2). Restriction to the unitary representations of the real form
su(2|2)C will require one to replace SL(2) with its real form SU(1, 1); the latter is defined by
imposing the following two conditions:

v∗
1 = u1, v∗

2 = u2.

Further, one can see that the action (3.53) leaves the following combination of charges
invariant:

H2 − 4CC† ≡ R2.

The invariant R2 classifies the orbits of SU(1, 1) in the space of central charges. They can
be of three types depending on the value of R2—a two-sheeted hyperboloid for R2 > 0,
a one-sheeted hyperboloid R2 < 0 and a cone for R2 = 0. We are interested in the
R2 > 0 orbits only, because these orbits correspond to the positive and negative energy
unitary representations of su(2|2)C .

The outer automorphism group allows one to establish a connection between the
positive/negative energy (highest/lowest weight) representations of su(2|2)C and those of the
usual (non-extended) algebra su(2|2). Indeed, starting with an irrep of su(2|2)C characterized
by some values of C,C†,H with R2 > 0 and choosing the parameters ui, vi appropriately,

one can always make the charges C̃ and C̃
†

vanishing. Thus, the transformed representation
is the one for usual su(2|2) with H̃ equal to

H̃ = ±
√

H2 − 4CC†,

where the sign in front of the square root correlates with the sign of H. The inverse statement
is also true: any irreducible representation of the centrally extended algebra with R2 > 0 can
be obtained from a representation of the usual su(2|2) algebra with C = C† = 0.

Let us now describe in more detail the action of the outer automorphism group on the
fundamental irreps of su(2|2)C . Under this action the matrix h encoding the representation
parameters undergo the right shift by an SU(1, 1)-matrix

h =
(
a b

c d

)
→
(
u1 u2

v2 v1

)(
a b

c d

)
. (3.54)

According to the discussion above, SU(1, 1) acts transitively on each sheet of the two-sheeted
hyperboloid R2 = 1. The tip of the upper sheet corresponds to the special irrep with vanishing
values for C and C†, and H equal to unity. This representation is nothing else but the unique
fundamental positive energy representation of the non-extended algebra su(2|2).

3.2.3. Parameterizations of a, b, c, d. The parameters a, b, c, d depend on the string tension
g and the world-sheet momenta p. To find their explicit dependence, we take into account that
the central charges are expressed via the momentum P by equation (2.128). Therefore, the
parameters satisfy the following relations:
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ab = ig

2
(eip − 1) e2iξ , cd = g

2i
(e−ip − 1) e−2iξ , H = ad + bc = 2ad − 1, (3.55)

where p is the value of the world-sheet momentum P on the representation.
The shortening condition (3.48) implies that the energy depends on p only and it leads to

the following dispersion relation for particles from the fundamental su(2|2)C multiplet:

H 2 = 1 + 4g2 sin2 p

2
. (3.56)

To simplify our further treatment, we assume that the representation is unitary. In this case
the parameters g, p, ξ are real, H is positive, and the equations (3.55), (3.46) allow one to
parametrize a, b, c, d as

a = η eiξ eiϕ, b = g

2
(eip − 1)

i eiξ

η
e−iϕ,

d = ηe− ip
2 e−iξ e−iϕ, c = g

2
(e−ip − 1) e

ip
2

e−iξ

iη
eiϕ,

(3.57)

where for unitary representations ϕ is an arbitrary real number, and η is expressed through the

momentum p and the energy H =
√

1 + 4g2 sin2 p
2 as follows:

η = e
ip
4

√
H + 1

2
. (3.58)

In the last formula the prefactor e
ip
4 may look rather artificial. Nevertheless, it plays an

important role in what follows, in particular, its presence will make η a meromorphic function
on the rapidity torus we introduce in the following subsection.

The fundamental representation is completely determined by the parameters g, p, ξ . The
parameter ϕ just reflects a freedom in the choice of the basis vectors |eM〉, and in what follows
we set it to zero by proper rescaling of |eM〉. Then, formulae (3.57) render the parameters
a, b, c, d of the fundamental representation as functions of the three independent parameters
g, p, ξ .

Another convenient parametrization is obtained by replacing the momentum p with two
new parameters x+, x−. They are related to p as

x+

x− = eip, (3.59)

and satisfy the constraint

x+ +
1

x+
− x− − 1

x− = 2i

g
. (3.60)

One can show that a, b, c, d are then expressed through g, x± and ξ in the following way (we
set ϕ = 0):

a = ηeiξ , b = −η e− p

2

x− eiξ , c = −η e−iξ

x+
, d = η e− ip

2 e−iξ , (3.61)

where the parameter η is given by

η = e
ip
4

√
igx− − igx+

2
. (3.62)

With this parametrization we find that the central charge H is expressed as

H = 1 +
ig

x+
− ig

x− = igx− − igx+ − 1, (3.63)
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while the remaining central charges take the form

C = ig

2

(
x+

x− − 1

)
e2iξ , C = g

2i

(
x−

x+
− 1

)
e−2iξ . (3.64)

We will see that the S-matrix coefficients are conveniently expressed in terms of x±.
In what follows we denote the fundamental representation as V (p, ζ ) (or just V if the

values of p and ζ are not important), where ζ = e2iξ .

3.2.4. Rapidity torus. Here we would like to find an analog of the rapidity variable for the
non-Lorentz-invariant string sigma model and to understand the action of crossing symmetry.

Our starting point is the dispersion relation (3.56) for particles from the fundamental
su(2|2)C-multiplet. This formula shows that the universal cover of the parameter space
describing the representation is an elliptic curve. Indeed, equation (3.56) can be naturally
uniformized in terms of Jacobi elliptic functions

p = 2amz, sin
p

2
= sn(z, k), H = dn(z, k), (3.65)

where we introduced the elliptic modulus26 k = −4g2 = − λ
π2 < 0. The corresponding

elliptic curve (the torus) has two periods 2ω1 and 2ω2, the first one is real and the second one
is imaginary

2ω1 = 4K(k), 2ω2 = 4i K(1 − k)− 4K(k),

where K(k) stands for the complete elliptic integral of the first kind. The dispersion relation is
obviously invariant under shifts of z by 2ω1 and 2ω2. The torus parametrized by the complex
variable z is the analog of the rapidity plane in two-dimensional relativistic models.

In this parametrization the real z-axis can be called the physical one for the original string
theory, because for real values of z the energy is positive and the momentum is real due to

1 � dn(z, k) �
√
k′, z ∈ R,

where k′ ≡ 1 − k is the complementary modulus.
We further note that the representation parameters x± are expressed in terms of Jacobi

elliptic functions as

x± = 1

2g

(
cn z

sn z
± i

)
(1 + dn z). (3.66)

This form of x± follows from the requirement that for real values of z the absolute values of x±

are greater than unity |x±| > 1, and the imaginary parts satisfy Im(x+) > 0 and Im(x−) < 0.
The transformation properties of the parameters x± under shifts of z by some fractions of

the periods are presented in the table 1. Since both the dispersion relation and x± are periodic
with period ω1, the range of the real part of z can be restricted to the interval from −ω1/2 to
ω1/2 which corresponds to −π � p � π .

Now we analyze what happens to the torus in the limits g → ∞ and g → 0. When
g → ∞ the periods exhibit the following behavior:

ω1 → log g

g
, ω2 → iπ

2g
if g → ∞. (3.67)

To keep the range of Im(z) finite, we rescale z as z → z/(2g), and the momentum asp → p/g.
Then the dispersion relation (3.56) acquires the standard relativistic form (3.40), the variable

26 Our convention for the elliptic modulus is the same as accepted in the Mathematica program, e.g., sn(z, k) =
JacobiSN[z, k]. Throughout the paper we will often indicate only the z-dependence of Jacobi elliptic functions until
it leads to any confusion.
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Table 1. Transformations of x± under some shifts of z.

z x+ x−

z + ω1 x+ x−

z + ω2 1/x+ 1/x−

z + 1
2 (ω1 + ω2) −1/x− −x+

z + (ω1 + ω2) 1/x+ 1/x−

z + 3
2 (ω1 + ω2) −x− −1/x+

−z −x− −x+

−z + 1
2 (ω1 + ω2) 1/x+ x−

−z + (ω1 + ω2) −1/x− −1/x+

−z + 3
2 (ω1 + ω2) x+ 1/x−

z plays the role of rapidity θ as p = sinh z. As to the torus, it degenerates into a strip with
−π < Im(z) < π and −∞ < Re(z) < ∞. This is twice the physical strip of a relativistic
field theory.

In the limit g → 0 the periods of the torus have the following behavior:

ω1 → π, ω2 → 2i log g if g → 0. (3.68)

Thus, the torus degenerates into the strip with −π/2 < Re(z) < π/2 and −∞ < Im(z) <∞.
The limit g → 0 corresponds to the one-loop gauge theory.

An important property of our parametrization of the fundamental representation (3.61)
is that if the parameter eiξ is a meromorphic function on the torus then all the parameters
a, b, c, d are meromorphic functions as well. To show this, one has to resolve the branch cut
ambiguities arising from the parameter η (3.62).

This can be done in the following way. First, the elliptic parametrization (3.66) gives

η(p) = e
i
4p

√
igx−(p)− igx+(p)

2
= 1√

2
e

i
2 amz

√
1 + dn z

= 1√
2

√
(1 + dn z)(cn z + i snz). (3.69)

Second, by using the following formulae (recall k = −4g2)

1 + dn z = 2dn2 z
2

1 + 4g2sn4 z
2

, cn z + i snz =
(
cn z

2 + i sn z2 dn z
2

)2
1 + 4g2sn4 z

2

,

relating elliptic functions to those of the half argument, we can resolve the branch cut
ambiguities by means of the relation

e
i
4p

√
igx−(p)− igx+(p)

2
= dn z

2

(
cn z

2 + i sn z2 dn z
2

)
1 + 4g2sn4 z

2

≡ η(z) (3.70)

valid in the region −ω1
2 < Re z < ω1

2 and −ω2/ i < Im z < ω2/ i. Finally, we note that since

e− i
2 p = cn z − i snz, and x± are meromorphic functions, then the representation parameters

a, b, c, d are meromorphic as well. This property greatly facilitates the treatment of crossing
symmetry.

3.3. The su(2|2)-invariant S-matrix

Since the manifest symmetry algebra of the light-cone string theory on AdS5 × S5 consists of
two copies of the centrally extended su(2|2), the creation operatorsA†

MṀ
(p) carry two indices
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M and Ṁ , where the dotted index is for the second su(2|2). The n-particle states are obtained
by acting with the creation operators on the vacuum

A
†
M1Ṁ1

(p1) · · ·A†
MnṀn

(pn)|�〉 ≡ ∣∣A†
M1Ṁ1

(p1) · · ·A†
MnṀn

(pn)
〉
. (3.71)

For the purpose of this section we can think of A†
MṀ
(p) as being a product of two creation

operators A†
MṀ
(p) = A

†
M(p) × A

†
Ṁ
(p) and restrict our attention to the states created by

A
†
M(p).

3.3.1. Two-particle states and the S-matrix. It is clear that a one-particle state
∣∣A†
M(p)
〉

is
identified with the basis vector |eM〉 of the fundamental representation V (p, 1) of su(2|2)C
(and we also set ϕ = 0). Let us stress that we have to set the parameter ζ to 1, because we use
the canonical form of the central charge C with ξ = 0

C = ig

2
(eiP − 1), C

∣∣A†
M(p)
〉 = ig

2
(eip − 1)

∣∣A†
M(p)
〉
. (3.72)

Then the two-particle states created byA†
M(p) should be identified with the tensor product

of fundamental representations of su(2|2)C∣∣A†
M1
(p1)A

†
M2
(p2)
〉 ∼ V (p1, ζ1)⊗ V (p2, ζ2), (3.73)

equipped with the canonical action of the symmetry generators in the tensor product. An
important observation is that the parameters ζk cannot be equal to 1. The reason for that is
very simple. Computing the central charge C on the two-particle state, we get

C
∣∣A†
M1
(p1)A

†
M2
(p2)
〉 = ig

2
(ei(p1+p2) − 1)

∣∣A†
M1
(p1)A

†
M2
(p2)
〉
, (3.74)

because PA
†
M(p) = A†

M(p)(P + p). On the other hand, the value of the central charge on the
tensor product of fundamental representations is equal to the sum of their charges

CV (p1, ζ1)⊗ V (p2, ζ2) = ig

2
(ζ1(e

ip1 − 1) + ζ2(e
ip2 − 1))V (p1, ζ1)⊗ V (p2, ζ2).

Thus, we must have the following identity:

ei(p1+p2) − 1 = ζ1(e
ip1 − 1) + ζ2(e

ip2 − 1), (3.75)

which obviously cannot be satisfied if both ζ1 and ζ2 are equal to 1. In fact, it is easy to show
that there are only two solutions to this equation for ζk lying on the unit circle

{ζ1 = 1, ζ2 = eip1}, or {ζ1 = eip2 , ζ2 = 1}. (3.76)

A priori any of these two solutions can be used to identify a two-particle state with the tensor
product. However, the form of the S-matrix depends on the identification, and, as we will
see shortly, it is the first solution that leads to the S-matrix which precisely agrees with the
perturbative S-matrix discussed in the previous section.

It is readily seen that the first solution corresponds to the following rearrangement of the
commutation relation of the central charge C with A†

M(p)

CA
†
M(p) = C(p)A†

M(p) + eipA
†
M(p)C, (3.77)

while the second solution corresponds to another rearrangement of the commutation relation

CA
†
M(p) = C(p)A†

M(p) eiP + A†
M(p)C. (3.78)

The latter has an explicit dependence on the operator of the world-sheet momentum.
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Thus, taking the first solution in (3.76), we see that the invariance condition (3.25) takes
the following form for bosonic generators Lab and Rαβ

S12(p1, p2)(J ⊗ 11 + 11 ⊗ J ) = (J ⊗ 11 + 11 ⊗ J )S12(p1, p2), (3.79)

and for fermionic generatorsQαa andQ†
a
α

S12(p1, p2)(J (p1; 1)⊗ 11 +� ⊗ J (p2; eip1))

= (J (p1; eip2)⊗� + 11 ⊗ J (p2; 1))S12(p1, p2), (3.80)

where J (p; ζ ) denote the structure constants matrices of the fundamental representation
parametrized by g, p and ζ = e2iξ , see (3.50) and (3.61). The grading matrix

� = diag(1, 1,−1,−1) (3.81)

defined in equation (3.14) takes care of the negative sign for fermions. These are the conditions
that should be used to find the S-matrix. With the choice of the representation parameters we
made, the resulting S-matrix satisfies the Yang–Baxter equation.

We note that if we think of vectors from V (p; ζ ) as columns then, as is seen from
equation (3.80), the S-matrix can be considered as a map

S12(p1, p2) : V (p1, 1)⊗ V (p2, e
ip1)→ V (p1, e

ip2)⊗ V (p2, 1), (3.82)

and if we think of vectors from V (p; ζ ) as rows then the S-matrix can be regarded as the
opposite map

S12(p1, p2) : V (p1, e
ip2)⊗ V (p2, 1)→ V (p1, 1)⊗ V (p2, e

ip1). (3.83)

From this point of view the action of the S-matrix corresponds to exchanging the two possible
choices of the parameters ζk of the two representations. Let us stress, however, that no matter
what interpretation we use, S12(p1, p2) is a 16×16 matrix acting in the 16-dimensional vector
space of the two-particle states

∣∣A†
M2
(p2)A

†
M1
(p1)
〉
.

When the string coupling constant g tends to infinity, the string sigma-model becomes
free, and the ZF creation operators turn into the usual creation operators, i.e. commute or
anti-commute depending on the statistics. Therefore, in this limit the S-matrix should be equal
to the graded unity.

The S-matrix satisfying equations (3.79) and (3.80) can be easily found up to an overall
scalar factor. In the following we will give up the particle momenta pi = 2 am zi in favor
of the rapidity variables zi . The invariance condition (3.79) that involves the bosonic algebra
generators fixes the form of the S-matrix up to ten arbitrary coefficients

S(z1, z2) =
10∑
k=1

ak�k, (3.84)

where�1, . . . , �10 form a basis of su(2)⊗su(2) invariant matrices acting in the tensor product
V (z1)⊗ V (z2)

�1 = E1111 + 1
2E1122 + 1

2E1221 + 1
2E2112 + 1

2E2211 + E2222,

�2 = 1
2E1122 − 1

2E1221 − 1
2E2112 + 1

2E2211,

�3 = E3333 + 1
2E3344 + 1

2E3443 + 1
2E4334 + 1

2E4433 + E4444,

�4 = 1
2E3344 − 1

2E3443 − 1
2E4334 + 1

2E4433,

�5 = E1133 + E1144 + E2233 + E2244,
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�6 = E3311 + E3322 + E4411 + E4422,

�7 = E1324 − E1423 − E2314 + E2413,

�8 = E3142 − E3241 − E4132 + E4231,

�9 = E1331 + E1441 + E2332 + E2442,

�10 = E3113 + E3223 + E4114 + E4224.

Here the symbols Ekilj are equal to (−1)εkεlEki ⊗ El
j , where Eki ≡ Eki are the standard

4 × 4 matrix unities27. The normalization of �i has been chosen in such a way that for
a1 = a2 = · · · = a6 = 1 and a7 = a8 = a9 = a10 = 0 the matrix S coincides with the graded
identity.

The unknown coefficients ak can be now determined from the permutation relations of
the S-matrix with the supersymmetry generators. We find

a1 = 1,

a2 = 2
(x−

1 − x−
2 )
(
x+

1 x
−
2 − 1
)
x+

2(
x−

1 − x+
2

)(
x+

1 x
+
2 − 1
)
x−

2

− 1,

a3 = x+
1 − x−

2

x−
1 − x+

2

η̃1η̃2

η1η2
,

a4 = −x
+
1 − x−

2

x−
1 − x+

2

η̃1η̃2

η1η2
+ 2
(x−

1 − x−
2 )(x

−
1 x

+
2 − 1)x+

1

(x−
1 − x+

2 )
(
x+

1 x
+
2 − 1
)
x−

1

η̃1η̃2

η1η2
,

a5 = x+
1 − x+

2

x−
1 − x+

2

η̃2

η2
,

a6 = x−
1 − x−

2

x−
1 − x+

2

η̃1

η1
,

a7 = g

2i

(
x−

1 − x+
1

)(
x+

1 − x+
2

)(
x−

2 − x+
2

)(
x−

1 − x+
2

)(
x−

1 x
−
2 − 1
) 1

η1η2
,

a8 = 2i

g

(x−
1 − x−

2 )(
x−

1 − x+
2

)(
x+

1 x
+
2 − 1
) η̃1η̃2,

a9 = x−
1 − x+

1

x−
1 − x+

2

η̃2

η1
,

a10 = x−
2 − x+

2

x−
1 − x+

2

η̃1

η2
.

The coefficients ak are determined up to an overall scaling factor, and we normalize them in a
canonical way by setting a1 = 1. The parameters ηk are not fixed by the invariance condition.
They are determined by imposing the generalized unitarity condition and the Yang–Baxter
equation, and are given by the following formulae:

η1 = η(z1), η̃1 = (cn z2 + i sn z2)η(z1)
(3.85)

η̃2 = η(z2), η̃2 = (cn z1 + i sn z1)η(z2),

where η(z) is defined by (3.70).

27 Choosing Ekilj ≡ Eki ⊗ Elj will produce the corresponding graded S-matrix Sg .

103



J. Phys. A: Math. Theor. 42 (2009) 254003 G Arutyunov and S Frolov

An important property of the S-matrix (3.84) is that up to the scalar factor it is a
meromorphic function of the torus variables z1, z2 because the parameters of all the four
representations appearing in the invariance condition (3.80) are meromorphic. In what follows
we often refer to the S-matrix (3.84) with the coefficients ai given above as to the canonical
su(2|2)-invariant fundamental S-matrix.

The canonical S-matrix (3.84) satisfies all the properties we discussed in subsection 3.1.3.
First, the physical unitarity condition S(z1, z2)

† · S(z1, z2) = 11 for z1, z2 real can be easily
checked by using the explicit form of the coefficients ai , and the Hermitian conjugation and
transposition conditions

(�i)
† = (�i)t = �i, i = 1, . . . , 6; (�7)

† = (�7)
t = −�8, (�9)

† = (�9)
t = �10.

Moreover, with the choice (3.85) of ηi , the S-matrix also satisfies the generalized unitarity
condition S(z∗1, z

∗
2)

† · S(z1, z2) = 11, and it is also a graded-symmetric matrix St (z1, z2) =
11gS(z1, z2)11g . The latter property implies that the coefficients ai satisfy the following
relations:

a7(z1, z2) = a8(z1, z2), a9(z1, z2) = a10(z1, z2), (3.86)

which, in fact, reduces the number of independent coefficients to seven.
If p1 = p2 or, equivalently, z1 = z2 the canonical S-matrix becomes the permutation

matrix. As will become clear in the following section, the world-sheet S-matrix reduces at
this special point to minus the permutation due to the scalar factor which tends to −1.

We further note that the form of the structure constants matrices J (p; ζ ) allows one
to determine the commutation relations of the symmetry operators with the creation and
annihilation operators. It is convenient to use the matrix notations, i.e. to combine A†

M and
AM into a row and column, respectively, and the symmetry algebra structure constants of
the one-particle representation (3.61) with ξ = 0 into matrices Lab, Rαβ,Qαa and Q†

a
α , see

(3.49). Then, the commutation relations for the centrally extended algebra su(2|2)C can be
written in the following simple form of the braided (anti)-commutators:

La
bA†(p)− A†(p)La

b = A†(p)La
b,

Rα
βA†(p)− A†(p)Rα

β = A†(p)Rα
β,

Qα
aA†(p)− eip/2A†(p)�Qα

a = A†(p)Qα
a(p), (3.87)

Q†
a
αA†(p)− e−ip/2A†(p)�Q†

a
α = A†(p)Q†

a
α(p).

Thus, the braiding factors in (3.87) are the exponents e±ip/2. This form of the commutation
relations is the one that usually appears in models with non-local charges.

It is worthwhile to note that the form of the two-particle structure constant matrices
appearing in the invariance condition (3.80) allows us to reformulate the problem by using the
Hopf algebra language, see appendix 3.5.3 for detail.

3.3.2. Multi-particle states. Multi-particle states created by A†
M(p) are correspondingly

identified with the tensor product of fundamental representations of su(2|2)C∣∣A†
M1
(p1) · · ·A†

Mn
(pn)
〉 ∼ V (p1, ζ1)⊗ · · · ⊗ V (pn, ζn), (3.88)

equipped with the canonical action of the symmetry generators in the tensor product, and the
parameters ζk have to satisfy the following identity:

ei(p1+···+pn) − 1 =
n∑
k=1

ζk(e
ipk − 1). (3.89)
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In general, there are many different solutions to this equation. In our case, however, the choice
of ζk is fixed by the commutation relations (3.87) and (3.77). One can easily see that the only
solution compatible with (3.87) is

ζ1 = 1, ζ2 = eip1 , . . . , ζn−1 = ei(p1+···+pn−2), ζn = ei(p1+···+pn−1). (3.90)

It is clear that the multi-particle S-matrix just maps the vector space with this choice of ζk to
the (isomorphic) space with the following choice of ζk:

ζ1 = ei(p2+···+pn), ζ2 = ei(p3+···+pn), . . . , ζn−1 = eipn, ζn = 1, (3.91)

because the second choice obviously corresponds to the order of the ZF creation operators in
the out-state.

Due to the integrability of the model the multi-particle S-matrix factorizes into a product
of two-particle ones, and the consistency condition for the factorizability is equivalent to the
Yang–Baxter equation.

3.4. Crossing symmetry

3.4.1. World-sheet S-matrix and dressing phase. The canonical su(2|2)-invariant
fundamental S-matrix can be used to find the corresponding su(2|2) ⊕ su(2|2) invariant
world-sheet S-matrix which describes the scattering of fundamental particles in the light-cone
string sigma model. To this end, one should multiply the tensor product of two copies of the
canonical S-matrix by a scalar factor so that the resulting matrix would satisfy an equation
imposed by crossing symmetry. Thus, the world-sheet S-matrix describing the scattering of
two fundamental particles is of the form

S(z1, z2) = S0(z1, z2)S(z1, z2)⊗̌S(z1, z2). (3.92)

The tensor product in (3.92) is unusual and it takes care of various signs which arise due to
factorization of the ZF creation operators. For the graded S-matrix these signs were determined
in subsection 2.3.3, see equation (2.110). Taking into account that the graded S-matrix is equal
to the product of the graded identity and the S-matrix (3.92), one finds the indexed version of
equation (3.92)

S
PṖ ,QQ̇

MṀ,NṄ
(z1, z2) = (−1)εṀ εN+εP εQ̇S0(z1, z2)S

PQ
MN(z1, z2)Ṡ

Ṗ Q̇

ṀṄ
(z1, z2). (3.93)

Since �1 is the only su(2)⊕ su(2) invariant matrix which contains the term E1
1 ⊗ E1

1,
the S-matrix component

S
11̇,11̇
11̇,11̇

(z1, z2) ≡ Ssu(2)(z1, z2) = S0(z1, z2)a1(z1, z2)
2

describes the scattering of particles in the su(2) sector of the theory. Since we have set a1

equal to unity, the scalar factor S0 in equation (3.92) is simply equal to the S-matrix of the
su(2) sector

S0(z1, z2) = Ssu(2)(z1, z2).

Thus, assuming integrability and preservation of classical symmetries at the quantum level,
we conclude that the S-matrix in the su(2) sector encodes the full dynamics of the model as
its form cannot be fixed by kinematical symmetries. This S-matrix was determined by using
various indirect arguments involving both string and gauge theory considerations which will
be discussed in part II of the review. Here we will present the resulting expression

Ssu(2)(z1, z2) = eia(p2ω1−p1ω2)
x+

1

x−
1

x−
2

x+
2

1

σ
(
x±

1 , x
±
2

)2 u1 − u2 − 2i
g

u1 − u2 + 2i
g

. (3.94)
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In equation (3.94) the spectral parameters uk are expressed in terms of x±
k as follows

uk = 1

2

(
x+
k +

1

x+
k

+ x−
k +

1

x−
k

)
,

and in terms of the u-parameters the last term in (3.94) is nothing else but the S-matrix of the
Heisenberg spin chain. It exhibits a pole at u1 −u2 = − 2i

g
which corresponds to a bound state

of two fundamental particles from the su(2) sector, as we will show in part II.
The first factor in (3.94) depends on a which is the parameter of the uniform light-cone

gauge (2.8), and

ωi =
√

1 + 4g2 sin2
pi

2

is the energy of the ith particle. Under crossing both p andω change sign and, as a consequence,
the gauge-dependent factor solves the homogeneous crossing equation. Without loss of
generality, in what follows we set a = 0.

The gauge-independent function σ
(
x±

1 , x
±
2

)
is called the dressing factor, and it is often

written in the exponential form σ
(
x±

1 , x
±
2

) = eiθ(x±
1 ,x

±
2 ). Here the dressing phase

θ(x+
1 , x

−
1 , x

+
2 , x

−
2 ) =

∞∑
r=2

∞∑
s>r

r+s=odd

cr,s(g)
[
qr
(
x±

1

)
qs
(
x±

2

)− qr(x±
2

)
qs
(
x±

1

)]
(3.95)

is a 2-form on the vector space of conserved charges qr(x±)

qr(x
−
k , x

+
k ) = i

r − 1

[(
1

x+
k

)r−1

−
(

1

x−
k

)r−1
]
. (3.96)

The coefficients cr,s(g) are non-trivial real functions of the string tension and they admit an
asymptotic large g expansion

cr,s(g) = g
∞∑
n=0

1

gn
c(n)r,s , g � 1, (3.97)

where the numerical coefficients c(n)r,s can be determined from string sigma model perturbative
computations. The leading order coefficients c(0)r,s and the functional form (3.95) of the dressing
phase were found by discretizing the finite-gap integral equations which describe the spectrum
of classical spinning strings. The result is

c(0)r,s = 1
2δr+1,s . (3.98)

The leading coefficients (3.98) are already enough to relate the exact world-sheet S-matrix
we discuss here and the tree-level S-matrix computed in section 2. First, we construct the
graded version of the exact S-matrix: Sg(p1, p2) = 11gS(p1, p2). Second, we rescale the
particle momenta pi → pi/g and take the limit g → ∞. One then finds that the leading term
in the strong coupling expansion of the exact (graded) world-sheet S-matrix is the identity,
while the subleading one reproduces precisely the perturbative S-matrix of section 2.

Returning to the discussion of the dressing phase, the subleading coefficients in (3.97)
were fixed by analyzing the one-loop corrections to energies of circular spinning strings, and
turn out to be

c(1)r,s = − 2

π

(r − 1)(s − 1)

(r + s − 2)(s − r) , r + s = odd. (3.99)
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The requirement that the dressing factor satisfies the crossing symmetry equations leads to the
following proposal for all the coefficients c(n)r,s :

c(n)r,s = (−1)nζ(n)

2πn�(n− 1)
(r − 1)(s − 1)

�
[

1
2 (s + r + n− 3)

]
�
[

1
2 (s − r + n− 1)

]
�
[

1
2 (s + r − n + 1)�

[
1
2 (s − r − n + 3)

] , (3.100)

where we use that r + s = odd.
The coefficients cr,s(g) also admit a convergent small g expansion

cr,s(g) = g
∞∑

n=r+s−3

gnc̃(n)r,s , g <
1

2
. (3.101)

where the numerical coefficients c̃(n)r,s can, in principle, be extracted from anomalous dimensions

of primary operators of the perturbative gauge theory. The first nonvanishing coefficient c̃(2)2,3
requires an involved four-loop perturbative computation and it appears to be

c̃
(2)
2,3 = −ζ(3)

2
. (3.102)

The remaining coefficients were conjectured by assuming analytic continuation, and are given
by

c̃(n)r,s = cos
(

1
2πn
)
(−1)s+n2−nζ(1 + n)�(2 + n)�(1 + n)(r − 1)(s − 1)

�
[

5+n−r−s
2

]
�
[

3+n+r−s
2

]
�
[

3+n−r+s
2

]
�
[

1+n+r+s
2

] , (3.103)

where we use again that r+s = odd. This formula shows that the coefficients are nonvanishing
for, and only for, even n.

3.4.2. Crossing equations. Here we will come back to the issue of crossing symmetry,
which is essentially related to the existence of the two branches of the dispersion relation,
the one corresponding to unitary representations with H > 0 and the other corresponding to
anti-unitary ones with H < 0.

Recall that on the upper sheet of the hyperboloid (3.48) the variable z takes values
−ω1/2 � z � ω1/2. Shifting z by half of the imaginary period, we find

H(z)→ H(z + ω2) = dn(z + ω2, k) = − dn(z, k) = −H(z),
(3.104)

p(z)→ p(z + ω2) = 2am(z + ω2) = −2am(z) = −p(z).
Thus, under this transformation the positive energy branch of the dispersion relation transforms
into the negative one; both the Hamiltonian and the momentum change their sign. Thus, the
map z → z + ω2 is the analog of the crossing symmetry transformation in two-dimensional
relativistic field theories. In what follows we regard z as a complex variable and refer to
equation (3.104) as the crossing transform.

Let M ≡ M(H,C) be a matrix realization of a fundamental unitary irrep of su(2|2)C
characterized by the central charge values H and C. Consider now the following map (‘minus
supertransposition’):

M → −Mst.

Obviously, under this map the central charge values change their signs. Moreover, −M(H,C)st

is an irrep of su(2|2)C , but with exactly the opposite values of the central charges. In particular,
if M(H,C) belongs to the positive branch of the dispersion relation, then −M(H,C)st is on
the negative branch.

There are two transformations acting on the space of central charges: the first one is the
crossing transform which essentially interchanges the positive and negative sheets between
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themselves, the second one is an outer automorphism belonging to SU(1, 1). By combining
these two, one is always able to transform (−H,−C) into (H,C). To understand this issue,
we recall that in the elliptic parametrization both H and C are functions of z. Under the
crossing transform, the Hamiltonian and the momentum change sign, which is, however, not
always the case for C(z). In fact, we find that

C(z + ω2) = i

2
g(e−ip − 1) e2iξ = −e−ipC(z),

where we assume that ξ is independent of z.
On the other hand, one should recall a U(1) automorphism (a part of the outer SU(1, 1)

automorphism group), which acts on the super- and central charges as

Q(z)→ eiρQ(z), C(z)→ e2iρC(z).

Thus, if we pick the U(1)-automorphism obeying the condition

e2iρC(z + ω2) = −e2iρ e−ipC(z) = −C(z),
i.e., eiρ = ei p2 , then after applying the combined crossing and U(1) transformations, an original
irrep with (−H,−C) will receive the central charges (H,C) and, for this reason, must be
equivalent toM(H,C). In other words,

− ρ̂(M(z + ω2))
st = CM(z)C −1, (3.105)

where C is an intertwining matrix and ρ̂ denotes the action of the U(1)-automorphism. In
particular, specifying equation (3.105) for the kinematical generators we get

CLba = −LabC , CRβα = −RαβC , (3.106)

where we have taken into account that
(
Lba
)t = Lab , and

(
Rβα
)t = Rαβ . These relations fix the

form of C up to two coefficients

C =
(
c1σ2 0

0 c2σ2

)
,

where σ2 is the Pauli matrix. It is clear that only the ratio c1/c2 matters, and in what follows
we set c1 = 1 for definiteness. Then, specification of equation (3.105) for the supersymmetry
generators gives

ei p2Qα
a(z + ω2)

st = −CQα
a(z)C −1,

(3.107)
e−i p2Q†

a
α(z + ω2)

st = −CQ†
a
α(z)C −1.

The transformed supersymmetry generators can be easily found by using the following
relations:

x±(z + ω2) = 1/x±(z), η(z + ω2) = i

x+(z)
η(z). (3.108)

One can further show that the matrix C is given by28

C =
(
σ2 0
0 iσ2

)
. (3.109)

28 Essentially, C is a product of the charge conjugation and the parity transform matrices:

C = − i1/2
(
ε 0
0 ε

)(
i1/21l2 0

0 i−1/21l2

)
,

where ε is defined in equation (1.131).
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It is worthwhile mentioning that the representation obtained by shifting z in the opposite
direction is related to the original one through the matrix C −1

ei p2Qα
a(z− ω2)

st = −C −1Qα
a(z)C ,

(3.110)
e−i p2Q†

a
α(z− ω2)

st = −C −1Q†
a
α(z)C ,

because η(z− ω2) = − i
x+(z)

η(z).
To derive the crossing equations, we use equations (3.107), (3.110) that relate the

contragradient representation to the original one, and the invariance conditions (3.79), (3.80).
Taking the transpose of (3.79) with respect to the first factor in the tensor product of two
matrices, and using the relations (3.106), we get that the matrix C −1

1 S
t1
12C1 is su(2)⊕ su(2)-

invariant, i.e. it commutes with the bosonic generators.
Next, we rewrite equation (3.80) in the following form:

S12(z1, z2)[J1(z1; 1) +�1J2(z2; eip(z1))] = [J1(z1; eip(z2))�2 + J2(z2; 1)]S12(z1, z2),

(3.111)

where the subscripts 1, 2 indicate the embedding of the matrices into the tensor product:
J1(z; ζ ) ≡ J (z; ζ ) ⊗ 11, J2(z; ζ ) ≡ 11 ⊗ J (z; ζ ). Then, we take the transpose of equation
(3.111) with respect to the first factor in the tensor product of two matrix spaces, and use the
relations (3.110), (3.107) written in the form29

Qα
a(z; ζ )t = −e

ip(z)
2 CQα

a(z− ω2; ζ )C −1�,
(3.112)

Qα
a(z; ζ )t = −e

ip(z)
2 C −1Qα

a(z + ω2; ζ )C�,
and similar formulae forQ†

a
α . By using the first formula in (3.112), after a simple computation,

we find that the matrix C1S
t1
12(z1 + ω2, z2)C

−1
1 satisfies the same invariance conditions as the

matrix S−1
12 (z1, z2) and, therefore, the two matrices can differ only by a function of z1, z2. The

crossing symmetry condition is just a statement that an su(2|2)-invariant S-matrix could be
multiplied by a scalar factor such that these two matrices become equal to each other

C1S
t1
12(z1 + ω2, z2)C

−1
1 = S−1

12 (z1, z2). (3.113)

In the same way, transposing equation (3.111) with respect to the second factor, we derive the
second crossing equation

C2S
t2
12(z1, z2 − ω2)C

−1
2 = S−1

12 (z1, z2). (3.114)

The crossing equations impose important restrictions on the form of the S-matrix scalar factor.
We find, in particular, that the S-matrix in the su(2) sector should satisfy the following crossing
symmetry equations:

Ssu(2)(z1, z2)Ssu(2)(z1 + ω2, z2) = f (x±
1 , x

±
2

)2
,

(3.115)
Ssu(2)(z1, z2)Ssu(2)(z1, z2 − ω2) = f (x±

1 , x
±
2

)2
,

where the function f
(
x±

1 , x
±
2

)
is defined by

f
(
x±

1 , x
±
2

) = (x−
1 − x−

2 )
(
1 − 1

x−
1 x

+
2

)(
x+

1 − x−
2

)(
1 − 1

x+
1 x

+
2

) (3.116)

where the variables x±
i should be expressed through zi by using equation (3.66).

29 Here we have taken into account thatMst = Mt� and also indicated a possible dependence of the supersymmetry
generators on the parameter ζ .
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These equations together with formula (3.94) can be used to derive the crossing equations
for the dressing factor σ . In fact, the simplest form of these equations arises for a function

�(z1, z2) which differs from σ by the extra factor x
−
1
x+

1

x+
2

x−
2

entering in equation (3.94)

�(z1, z2) =
(
x−

1

x+
1

x+
2

x−
2

) 1
2

σ
(
x±

1 , x
±
2

)
. (3.117)

It is not difficult to show that �(z1, z2) should satisfy the following crossing equations30:

�(z1, z2)�(z1 + ω2, z2) = h(x±
1 , x

±
2

)
,

(3.118)
�(z1, z2)�(z1, z2 − ω2) = h(x±

1 , x
±
2

)
,

where the function h
(
x±

1 , x
±
2

)
is given by

h
(
x±

1 , x
±
2

) = (x−
1 − x+

2

)(
1 − 1

x−
1 x

−
2

)(
x+

1 − x+
2

)(
1 − 1

x+
1 x

−
2

) .
It is important to note that the function h

(
x±

1 , x
±
2

)
obeys the following identities:

h
(
1
/
x±

1 , x
±
2

)
h
(
x±

2 , x
±
1

) = 1, h
(
x±

1 , 1/x
±
2

)
h
(
x±

2 , x
±
1

) = 1, (3.119)

which are incompatible with the assumption that the dressing factor is both unitary and
meromorphic function of zi . Since unitarity is a physical requirement, the dressing factor
cannot be a meromorphic function of the torus rapidity variables.

3.5. Appendix

3.5.1. Monodromies of the S-matrix. The canonical su(2|2)-invariant fundamental S-matrix
is defined on a product of two rapidity tori. As such, it exhibits certain monodromy properties
under shifts of rapidity variables by certain fractions of the real and imaginary periods of the
torus.

By using the explicit form (3.84), one finds

S(z1 + 2ω1, z2) = �1S(z1, z2)�1 = �2S(z1, z2)�2,
(3.120)

S(z1 + 2ω2, z2) = �1S(z1, z2)�1 = �2S(z1, z2)�2.

Hence, the S-matrix has the same monodromies over real and imaginary cycles and it is a
periodic function on a double torus with periods 4ω1 and 4ω2. Here �1 = � ⊗ 11 and
�2 = 11⊗�, where� is given by equation (3.81). The element� is in the center of the group
SU(2)× SU(2). We recall that compatibility of scattering with statistics implies that

[S(z1, z2),� ⊗�] = 0. (3.121)

Now we establish the monodromy properties with respect to shifts by half-periods. Under
the shift by the real half-period we get

S(z1 + ω1, z2) = (V ⊗�)S(z1, z2)(V
−1 ⊗ 11),

(3.122)
S(z1, z2 + ω1) = (� ⊗ V −1)S(z1, z2)(11 ⊗ V )

and, as a consequence,

S(z1 + ω1, z2 + ω1) = (� ⊗�)(V ⊗ V −1)S(z1, z2)(V
−1 ⊗ V ).

30 The second equation in (3.118) follows from the first one by using the unitarity condition �(z1, z2)�(z2, z1) = 1.
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Here V = diag
(
e

iπ
4 , e

iπ
4 , e− iπ

4 , e− iπ
4
)
. Thus, up to multiplication by � ⊗ �, under the

simultaneous shift of the rapidity variables by the real half-period the S-matrix undergoes
a similarity transformation with V ⊗ V −1.

The shift by the imaginary half-period is the crossing transformation which has been
already discussed in section 3.4. For completeness, we present it here for the S-matrix (3.84)

C −1
1 St1(z1, z2)C1 = 1

f (z1, z2)
S−1(z1 + ω2, z2),

(3.123)
C −1

2 St2(z1, z2)C2 = 1

f (z1, z2)
S−1(z1, z2 − ω2),

where the function f (z1, z2) ≡ f (x±
1 , x

±
2 ) is defined in (3.116). Combining the last formulae

and using the parity invariance of the S-matrix, we further find that

C −1
1 C −1

2 St (z1, z2)C1C2 = S(z1 + ω2, z2 + ω2), (3.124)

where St (z1, z2) = St1,t2(z1, z2). Here we have used that f (z1, z2)f (−z1 − ω2,−z2) = 1.
On the other hand, on can independently verify that

St (z1, z2) = C1C2S(z1, z2)C
−1
1 C −1

2 = C −1
1 C −1

2 S(z1, z2)C1C2. (3.125)

These two expressions for the transposed S-matrix are compatible due to the fact that C 2 = �.
Equation (3.125) together with equation (3.124) implies that the S-matrix remains invariant
under the simultaneous shift of z1 and z2 by ω2

S(z1 + ω2, z2 + ω2) = S(z1, z2). (3.126)

Finally, we note that the time reversal invariance and equation (3.125) lead to another
commutativity property

[S(z1, z2), 11g(C ⊗ C )] = 0. (3.127)

We remark that for the S-matrix (3.84) both equations, (3.121) and (3.127), are trivially
satisfied without invoking the explicit form of the coefficients ai .

The monodromic properties of the S-matrix together with generalized physical unitarity
allow one to consistently define an elliptic analog of the ZF algebra (the ZF algebra on the
rapidity torus). We however will not consider it here.

3.5.2. One-loop S-matrix. Here we describe the properties of the ‘one-loop’ S-matrix which
is obtained from the S-matrix (3.84) upon taking the limit g → 0. We continue to work in
the elliptic parametrization introduced in subsection 3.2.4. According to equation (3.68), in
this limit Jacobi elliptic functions degenerate into the corresponding trigonometric ones and
we find the following trigonometric S-matrix:

S(z1, z2) = (E1
1 ⊗ E1

1 + E2
2 ⊗ E2

2 + E1
1 ⊗ E2

2 + E2
2 ⊗ E1

1

)
+

2i

cot z1 − cot z2 − 2 i

(
E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1 − E2

1 ⊗ E1
2 − E1

2 ⊗ E2
1

)
− e−i(z1−z2)

cot z1 − cot z2 + 2 i

cot z1 − cot z2 − 2 i

(
E3

3 ⊗ E3
3 + E4

4 ⊗ E4
4 + E3

3 ⊗ E4
4 + E4

4 ⊗ E3
3

)
+ e−i(z1−z2)

2i

cot z1 − cot z2 − 2 i

(
E3

3 ⊗ E4
4 + E4

4 ⊗ E3
3 − E4

3 ⊗ E3
4 − E3

4 ⊗ E4
3

)
+ e−iz1

cot z1 − cot z2

cot z1 − cot z2 − 2 i

(
E1

1 ⊗ E3
3 + E1

1 ⊗ E4
4 + E2

2 ⊗ E3
3 + E2

2 ⊗ E4
4

)
+ eiz2

cot z1 − cot z2

cot z1 − cot z2 − 2 i

(
E3

3 ⊗ E1
1 + E4

4 ⊗ E1
1 + E3

3 ⊗ E2
2 + E4

4 ⊗ E2
2

)
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− e− i
2 (z1 − z2)

2i

cot z1 − cot z2 − 2i

(
E3

1 ⊗E1
3 +E4

1 ⊗E1
4 +E3

2 ⊗ E2
3 +E4

2 ⊗E2
4

)
− e− i

2 (z1−z2)
2i

cot z1 − cot z2 − 2i

(
E1

3 ⊗ E3
1 +E1

4 ⊗ E4
1 +E2

3 ⊗ E3
2 +E2

4 ⊗E4
2

)
.

(3.128)

The relations between the z-variable, the momentum and the rescaled rapidity u → gu

transform in the limit g → 0 into

p = 2z, u = cot z = cot
p

2
. (3.129)

Surprisingly enough, this S-matrix cannot be written in the difference form, i.e. as a function of
one variable being the difference of a properly introduced spectral parameter. By construction,
this S-matrix satisfies the Yang–Baxter equation

S23(z2, z3)S13(z1, z3)S12(z1, z2) = S12(z1, z2)S13(z1, z3)S23(z2, z3), (3.130)

as one can also verify by direct calculation. On the other hand, at one-loop there is another
‘canonical’ S-matrix which is a linear combination of the graded identity and the usual
permutation

Scan
12 = u1 − u2

u1 − u2 − 2 i
11g12 − 2i

u1 − u2 − 2i
P12. (3.131)

This S-matrix satisfies the same Yang–Baxter equation (3.130).
It appears that two S-matrices, (3.128) and (3.131), are related by the following

transformation:

Scan(z1, z2) = U2(z1)[V1(z1)V2(z2)S12(z1, z2)V
−1

1 (z1)V
−1

2 (z2)]U
−1
1 (z2),

where we have introduced the diagonal matrices

U(z) = diag(1, 1, eiz, eiz),

V (z) = diag(ei z4 , ei z4 , e−i z4 , e−i z4 ).

The transformation by V is a ‘gauge’ transformation which always preserves the Yang–Baxter
equation. On the other hand, transformation by U is a twist that generically transforms the
usual Yang–Baxter equation into the twisted one and vice versa. Note also that the twist U
does not belong to the symmetry group SU(2)× SU(2) of the ‘all-loop’ S-matrix.

To understand why at one loop the Yang–Baxter equation is preserved under the twisting,
we first write the Yang–Baxter equation for Scan by using31 equation (3.131)

U3(z2)S23U
−1
2 (z3)U3(z1)S13U

−1
1 (z3)U2(z1)S12U

−1
1 (z2)

= U2(z1)S12U
−1
1 (z2)U3(z1)S13U

−1
1 (z3)U3(z2)S23U

−1
2 (z3), (3.132)

which can be reshuffled as follows:

U3(z2)S23U2(z1)U3(z1)S13U
−1
1 (z3)U

−1
2 (z3)S12U1(z2)

= U2(z1)U3(z1)S12U
−1
1 (z2)S13U3(z2)S23U

−1
1 (z3)U

−1
2 (z3). (3.133)

It is clear now that we will get the usual Yang–Baxter equation for S provided it obeys the
following relation:

[S,U ⊗ U ] = 0, (3.134)

31 The gauge transformation by the matrix V decouples from the Yang–Baxter equation.
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where U is an arbitrary diagonal matrix. One can easily verify that both S-matrices, (3.128)
and (3.131), do indeed satisfy this relation. At higher orders in g the relation (3.134) does not
hold anymore. The corresponding all-loop S-matrix (3.84) satisfies only a weaker condition

[S,G⊗G] = 0, G ∈ SU(2)× SU(2), (3.135)

which is nothing else but the invariance condition. As a consequence, the Yang–Baxter
equation is preserved by the twist only at the one-loop order.

3.5.3. Hopf algebra interpretation. In section 3.3 we have determined the commutation
relations of the su(2|2) symmetry algebra generators with the ZF operators. This allowed
us to define the action of this symmetry algebra in the multi-particle states constructed by
successive application of creation operators. An alternative way to define this action is to use
the concept of a Hopf algebra.

Let A be a vector space over complex numbers. Consider the following two maps

� : A → A ⊗ A, ε : A → complex numbers. (3.136)

If these maps satisfy the relations

(id ⊗�) ◦� = (�⊗ id) ◦�, (id ⊗ ε) ◦� = id = (ε ⊗ id) ◦�, (3.137)

then A is called a coalgebra. Accordingly, the map � is called the coproduct (or
comultiplication) of A and ε is the counit of A. A bialgebra A is both a unital associative
algebra and a coalgebra such that � and ε are algebra homomorphisms, and multiplication
μ and identity 11 are coalgebra homomorphisms. The fact that � and ε are algebra
homomorphisms is expressed as

�(ab) = �(a)�(b), ε(ab) = ε(a)ε(b), a, b ∈ A,
Finally, a Hopf algebra is a bialgebra equipped with a bijective map S : A → A, called
antipode, obeying the following relations:

μ(S ⊗ id) ◦� = 11 ◦ ε = μ(id ⊗ S) ◦�.
Let now A be a unitary graded associative algebra generated by even rotation generators

La
b,Rα

β , the odd supersymmetry generators Qα
a,Q†

a
α and two central elements H and P

subject to equations (3.43). The central charges C and C† are expressed via P by means of
equations (1.115).

In what follows we make use of the graded tensor product, that is for any algebra elements
a, b, c, d

(a⊗̂b)(c⊗̂d) = (−1)εbεc (ac⊗̂bd),
where εa = 0 if a is even and εa = −1 if a is odd.

Now we are ready to supply A with the structure of a Hopf algebra. We define the
following coproduct:

�(J) = J⊗̂11 + 11⊗̂J for any even generator,

�(Qα
a) = Qα

a⊗̂11 + e
i
2 P⊗̂Qα

a, (3.138)

�(Q†
a
α) = Q†

a
α⊗̂11 + e− i

2 P⊗̂Q†
a
α,

the counit

ε(11) = 1, ε(J) = ε(Qα
a
) = ε(Q†

a
α
) = 0 (3.139)

and the antipode

S(J) = −J, S
(
Qα

a
) = −e− i

2 PQα
a, S

(
Q†
a
α
) = −e

i
2 PQ†

a
α (3.140)
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and S(11) = 1. The reader can easily verify that with these definitions all Hopf algebra axioms
are satisfied. For instance, we compute32

�(C) = ig

2
(eP⊗1l+1l⊗P − 11 ⊗ 11) = ig

2
(eP ⊗ eP − 11 ⊗ 11) = C ⊗ 11 + eiP ⊗ C.

On the other hand,{
�Qα

a,�Qβ
b
} = {Qα

a⊗̂11 + e
i
2 P⊗̂Qα

a,Qβ
b⊗̂11 + e

i
2 P⊗̂Qβ

b
} ={

Qα
a,Qβ

b
}⊗ 11 + eiP ⊗ {Qα

a,Qβ
b
} = εαβεab(C ⊗ 11 + eiP ⊗ C) = εαβεab�C,

i.e. � is indeed an algebra homomorphism.
Let us show that the coproduct agrees with the form of the two-particle structure constants

appearing in (3.80). Let V be a vector space of the fundamental representation of A. This
space has a natural grading; the corresponding grading matrix is given by �. The action of,
say, supersymmetry generators Qα

a on the tensor product V ⊗ V is given by application of
the coproduct (3.138)

�
(
Qα

a
) · v ⊗ u = (Qα

a⊗̂11 + e
i
2 P⊗̂Qα

a
) · v ⊗ u

= Qα
a · v ⊗ u +� e

i
2 P · v ⊗ Qα

a · u, (3.141)

where v⊗u is an element of V ⊗V . Now one can recognize that the two-particle representation
coincides with the one appearing on the left-hand side of (3.80).

The action of the Hopf algebra operations on the algebra generators depends on the chosen
bases. Recall that A admits an automorphism

Q → eiξQ, C → e2iξC,

where ξ might be a non-trivial function of the central charges. For the choice ξ = − 1
4 P the

central charges C and C† take the form (2.134), and they become real and coincide. The action
of the coproduct on the redefined supercharges takes the most symmetric form

�(Qα
a) = Qα

a⊗̂ e− i
4 P + e

i
4 P⊗̂Qα

a,

�(Q†
a
α) = Q†

a
α⊗̂ e

i
4 P + e− i

4 P⊗̂Q†
a
α.

In the new basis the antipod becomes trivial for any algebra element

S(J) = −J, S
(
Qα

a
) = −Qα

a, S
(
Q†
a
α
) = −Q†

a
α. (3.142)

The only drawback of this algebra basis is that with C real a basis of the corresponding
fundamental representation cannot depend meromorphically on the torus variable z.

Our final comment concerns permutation relations (3.87). We observe that they can be
cast in the usual (anti)-commutator form by redefining the supersymmetry generators Qα

a and
Q†
a
α in the following way:

Qa
α → Qa

αeiP/2, Q†
a
α → Q†

a
αe−iP/2. (3.143)

Relations (3.87) for the redefined supersymmetry charges take the form of the (anti)-
commutators

Qα
aA†(p)− A†(p)�Qα

a = A†(p)Qα
a(p) e−iP/2,

(3.144)
Q†
a
αA†(p)− A†(p)�Q†

a
α = A†(p)Q†

a
α(p) eiP/2.

The only difference with the standard relations is the appearance of the operator e±iP/2 in the
right-hand side of equations (3.144). As in our discussion above, redefinition (3.143) changes
the momentum dependence of the central charge C

C → ig

2
(eiP − 1) e−iP = ig

2
(1 − e−iP), (3.145)

32 Since all elements here are even we can use the usual tensor product.
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and, therefore, the boundary conditions for the light-cone coordinate x−. Obviously, it does
not change the form of the S-matrix if one keeps track of the additional phases because the
redefined supercharges also commute with the S-matrix.

3.6. Bibliographic remarks

The Factorized Scattering Theory has been developed in [28]. For important applications the
reader may consult [105, 106]. The ZF algebra has been introduced in [28, 107]. Its various
properties and representation theory have been extensively discussed in the literature, see, e.g.,
[108, 109]. Our exposition of the Factorized Scattering Theory and its application to the string
sigma model follows closely [26, 27].

The exact dispersion relation (3.56) has been conjectured in [17]. In this work the local
conserved charges (3.96) has been introduced as the ‘higher loop’ generalization of conserved
charges of the Heisenberg model.

The psu(2|2)-invariant S-matrix has been obtained in [16] by exploiting the corresponding
invariance condition. This condition severely constraints its matrix structure but does not fix it
uniquely. In general, the S-matrix depends on a few parameters [38], which reflects the freedom
of choice of a two-particle basis, and, as a result, it satisfies a twisted version of the Yang–Baxter
equation. In a physical theory the S-matrix must be unique (up to unitary transformations).
In two-dimensional integrable models it must satisfy the condition of factorized scattering,
i.e. the Yang–Baxter equation. This requirement partially fixes the two-particle basis and
the corresponding S-matrix [26] leaving the possibility of performing momentum-dependent
transformations of one-particle states. An additional requirement of generalized physical
unitarity, or, equivalently, of physical unitarity of the S-matrix of the mirror model, leads to a
unique matrix expression [27] up to constant transformations of the one-particle basis. Then,
the only undetermined piece of the S-matrix is an overall normalization (the scalar factor).
The graded S-matrix obtained in section 3 is the inverse of the graded version of S found in
[26, 27]. This is done to get an agreement with the perturbative S-matrix of section 2, the
latter was computed by using the standard field-theoretic prescriptions.

The idea that the overall scalar factor can be constrained by requiring the world-sheet
scattering matrix to satisfy an analog of crossing symmetry has been put forward in [29], where
also a functional equation for this factor implied by crossing symmetry has been derived. In
fact, in relativistic integrable models compatibility of scattering with crossing symmetry is a
standard requirement [28, 110, 111]. In this respect, a peculiarity of the string sigma model
lies in the absence of the two-dimensional Lorentz invariance on the world-sheet. In the last
section we exhibited three different faces of crossing symmetry: crossing symmetry as an
additional invariance condition for the ZF algebra [26], crossing symmetry as a requirement
of trivial scattering of the singlet state [38] (see also [112]) and, finally, crossing symmetry as
the particle-to-antiparticle transform [29].

The representation theory of the centrally extended su(2|2) algebra has been studied in
[38], where, in particular, conditions leading to the multiplet shortening have been determined
and the outer automorphism group SL(2) has been identified. The rapidity torus has been
introduced in [29], although our uniformization (the same uniformization has been also used
in [38]) for the dispersion relation in terms of elliptic functions is different from that in [29].
Table 1 representing the transformation properties of x±(z) under shifts of z by some fractions
of the periods is taken from [38].

The most non-trivial part of the overall scalar factor of the world-sheet S-matrix is the
dressing phase. Its functional form in terms of local conserved charges of the model was
conjectured in [18] by discretizing the finite-gap solutions [22] of the classical string sigma
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model. The most general functional form of the dressing phase compatible with integrability
[113] is given by equation (3.95).

Further progress in determination of the dressing phase relied on comparison of the
energies of spinning strings at the classical and the one-loop level [24, 25, 114–120] with
those obtained by solving the asymptotic Bethe ansatz equations [121–129]. The general
method for determining the one-loop correction to the dressing phase has been developed in
[132] and used to obtain the one-loop correction to the coefficient c2,3 in equation (3.95).
This approached has been further applied to completely determine the dressing phase at one
loop [30, 133]. The same results were later derived by using the algebraic curve techniques
[130, 131].

Two known orders in the strong coupling expansion of the dressing phase [18, 30, 133]
were shown to solve the functional equation implied by crossing symmetry [100]. Formula
(3.100) that encodes an all-order asymptotic solution for the dressing phase was obtained in
[31] by exploiting its functional form (3.95) together with the crossing equation. Opposite to
the strong coupling expansion, gauge theory perturbative expansion of the dressing factor is
in powers of g and it has a finite radius of convergence. A proposal (3.103) leading to the
exact dressing factor has been put forward in [34] and it passed several very non-trivial tests
[32–36, 134]. A check that this exact dressing phase obeys the crossing equation for finite
values of g, i.e. not in the asymptotic sense, is currently lacking, however.

As was discussed at the beginning of section 3, quantum integrability is a plausible but
yet unproven property of the string sigma model. To reveal it, one has to demonstrate the
absence of particle production and factorization of multi-particle scattering. This important
question has been investigated in [135, 136], where factorization has been shown to hold at
leading orders in the strong coupling expansion.

The monodromy properties of the su(2|2)-invariant S-matrix have been established in
[27], where an elliptic analog of the ZF algebra has been introduced. The one-loop limit of
the S-matrix and its relation to the canonical S-matrix built out of the graded identity and
the permutation has been also analyzed there. The Hopf algebra structure discussed in the
appendix and in [26] seems to be equivalent (up to a twist and some redefinitions of the
supersymmetry generators and the central elements) to the one studied in [137, 138].
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